Skip to main content
Log in

The dynamics of sustained reentry in a ring model of cardiac tissue

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper describes the dynamics of circus movement around a fixed obstacle, using a one-dimensional continuous and uniform ring model of cardiac tissue to simulate sustained reentry. The membrane ionic current is simulated by a modified Beeler-Reuter formulation in which the kinetics of the fast sodium current were updated using more recent voltageclamp data. Changes in the ring length are used to modify the dynamics of reentry. Reentry is stable if the ring length (X) exceeds a critical value (X crit) and complete block occurs ifX is below a minimum (X min). Irregular sustained reentry is observed at intermediate ring lengths, as a narrow range of aperiodic reentry nearX crit, and a larger range of quasi-periodic reentry at shorter ring lengths. The basic pattern of irregular reentry is an alternation between long and short cycle length, action potential duration (APD), diastolic interval (DIA), wavelength, and excitable gap. In aperiodic reentry cycle length variations are small,APD andDIA fluctuations are of medium amplitude, and conduction velocity over the whole pathway is essentially constant during successive turns. Much larger fluctuations in these various quantities occur during quasi-periodic reentry, and they increase in size asX approachesX min. The complexity of quasiperiodic reentry patterns is related to three factors: the slope of theAPD versus DIA relation, which is greater than 1, the existence of a zone of slow conduction on the ring when the excitable gap becomes quite short, and the occurrence of triggered waves of secondary repolarization and excitability recovery. In the present model, quasi-periodic reentry with triggered secondary recovery covers most of the range of ring lengths, giving rise to sustained irregular reentry. There is very close agreement between our simulation results and experimental data obtained on rings of cardiac tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C. D., and O. Burkushov. Principles of Real Analysis. Amsterdam: North Holland, 1981, 285 pp.

    Google Scholar 

  2. Allessie, M. A., F. I. M. Bonke, and F. J. G. Schopman. Circus movement as a mechanism of tachycardia: III. The “leading circle” concept: A new model of circus movement in cardiac tissue without the involvement of an anatomic obstacle.Circ. Res. 41:9–18, 1977.

    CAS  PubMed  Google Scholar 

  3. Antzelevitch, C., and G. K. Moe. Electrotonically mediated delayed conduction and reentry in relation to slow responses in mammalian ventricular conducting tissue.Circ. Res. 49:1129–1139, 1981.

    CAS  PubMed  Google Scholar 

  4. Beeler, G. W., and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibers.J. Physiol. 268: 177–210, 1977.

    CAS  PubMed  Google Scholar 

  5. Bernstein, R. C., and L. H. Frame. Ventricular reentry around a fixed barrier: Resetting with advancement in an in vitro model.Circulation 81:267–280, 1990.

    CAS  PubMed  Google Scholar 

  6. Boersma, L., J. Brugada, C. J. H. Kirchhof, and M. A. Allessie. Entrainment of reentrant ventricular tachycardia in anisotropic rings of rabbit myocardium: mechanisms of termination, changes in morphology, and acceleration.Circulation. 88(1):1852–1865, 1993.

    CAS  PubMed  Google Scholar 

  7. Boineau, J. P., R. B. Schuessler, C. R. Mooney, C. B. Miller, A. C. Wylds, R. D. Hudson, J. M. Borremans, and C. W. Brockus. Natural and evoked atrial flutter due to circus movement in dogs.Am. J. Cardiol. 45:1167–1181, 1980.

    Article  CAS  PubMed  Google Scholar 

  8. Boyett, M. R., and B. R. Jewell. Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart.Prog. Biophys. Mol. Biol. 36:1–52, 1980.

    CAS  PubMed  Google Scholar 

  9. Brugada, J., L. Boersma, C. J. H. Kirchhof, V. V. T. Heynen, and M. A. Allessie. Reentrant excitation around a fixed obstacle in uniform anisotropic ventricular myocardium.Circulation 84:1296–1306, 1991.

    CAS  PubMed  Google Scholar 

  10. Courtemanche, M., L. Glass, and J. P. Keener. Instabilities of a propagating pulse in a ring of excitable media.Phys. Rev. Lett. 70:2182–2185, 1993.

    Article  PubMed  Google Scholar 

  11. Cranefield, P. F., and R. S. Aronson. Cardiac Arrhythmias: The Role of Triggered Activity and Other Mechanisms. New York: Futura Publishing Company, 1988, 706 pp.

    Google Scholar 

  12. De Bakker, J. M. T., F. J. L. Van Capelle, M. J. Janse, A. A. M. Wilde, R. Coronel, A. E. Becker, K. P. Dingemans, N. M. Van Hemel, and R. N. W. Hauer. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: Electrophysiologic and anatomic correlation.Circulation 77:589–606, 1988.

    PubMed  Google Scholar 

  13. Downar, E., L. Harris, L. L. Mickleborough, N. Shaikh, and I. D. Parson. Endocardial mapping of ventricular tachycardia in the intact human ventricle: Evidence for reentrant mechanisms.J. Am. Coll. Cardiol. 11:783–791, 1988.

    CAS  PubMed  Google Scholar 

  14. Drouhard, J. P., and F. A. Roberge. Revised formulation of the Hodgkin-Huxley equations of the sodium current in cardiac cells.Comput. Biomed. Res. 20:333–350, 1987.

    Article  CAS  PubMed  Google Scholar 

  15. Elphick, C., E. Meron, J. Rinzel, and E. A. Spiegel. Impulse patterning and relaxational propagation in excitable media.J. Theoret. Biol. 146:249–268, 1990.

    CAS  Google Scholar 

  16. Frame, L. H., and M. B. Simson. Oscillation of conduction, action potential duration and refractoriness: A mechanism for spontaneous termination of reentrant tachycardias.Circulation 78:1277–1287, 1988.

    CAS  PubMed  Google Scholar 

  17. Frame, L. H., R. L. Page, P. Boyden, J. Fenoglio, Jr., and B. F. Hoffman. Circus movement in the canine atrium around the tricuspid ring during experimental atrial flutter and during reentry in vitro.Circulation 76:1155–1175, 1987.

    CAS  PubMed  Google Scholar 

  18. Gottlieb, C. D., M. E. Rosenthal, N. J. Stamato, L. H. Frame, M. D. Lesh, J. M. Miller, and M. E. Josephson. A quantitative evaluation of refractoriness with a reentrant circuit during ventricular tachycardia: Relation to termination.Circulation 82:1289–1295, 1991.

    Google Scholar 

  19. Ito, H., and L. Glass. Theory of reentrant excitation in a ring of cardiac tissue.Physica D. 56:84–106, 1992.

    Article  Google Scholar 

  20. Janse, M. J., A. B. M. van der Steen, R. T. Van Dam, and D. Durrer. Refractory period of the dog's ventricular myocardium following sudden changes in frequency.Circ. Res. 24:251–262, 1969.

    CAS  PubMed  Google Scholar 

  21. Joosh, G., and P. D. Joseph. Elementary Stability and Bifurcation Theory. New York: Springer Verlag, 1990, 286 pp.

    Google Scholar 

  22. Karma, A. Spiral breakup in model equations of action potential propagation in cardiac tissue.Phys. Rev. Lett. 71: 1103–1106, 1993.

    PubMed  Google Scholar 

  23. Leon, L. J., and F. A. Roberge. A new cable model formulation based on Green's theorem.Ann. Biomed. Eng. 18:1–17, 1990.

    Article  CAS  PubMed  Google Scholar 

  24. Leon, L. J., and F. A. Roberge. Structural complexity effects on transverse propagation in a two-dimensional model of myocardium.IEEE Trans. Biomed. Eng. 38:997–1009, 1991.

    Article  CAS  PubMed  Google Scholar 

  25. Leon, L. J., F. A. Roberge, and A. Vinet. Simulation of two-dimensional anisotropic cardiac reentry: Effects of the wavelength on the reentry characteristics.Ann. Biomed. Eng., this issue.

  26. Lewis, T. J., and M. R. Guevara. Chaotic dynamics in an ionic model of the propagated action potential.J. Theoret. Biol. 146:407–432, 1990.

    CAS  Google Scholar 

  27. Norrie, D. H., and G. DeVries: An Introduction to Finite Element Analysis. New York: Academic Press, Inc., 1978, 301 pp.

    Google Scholar 

  28. Panfilov, A., and P. Hogeweg. Spiral breakup in a modified FitzHugh-Nagumo model.Physics Lett. A 176:295–299, 1993.

    Article  Google Scholar 

  29. Quan, W., and Y. Rudy. Unidirectional block and reentry of cardiac excitation: A model study.Circ. Res. 66:367–382, 1990.

    CAS  PubMed  Google Scholar 

  30. Rensma, P. L., M. A. Allessie, W. J. E. P. Lammers, F. I. M. Bonke, and M. J. Schalij. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs.Circ. Res. 62:395–410, 1988.

    CAS  PubMed  Google Scholar 

  31. Roberge, F. A., A. Vinet, and B. Victorn. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle.Circ. Res. 58:461–475, 1986.

    CAS  PubMed  Google Scholar 

  32. Vinet, A. Nonlinear dynamics of propagation in models of excitable tissues. In: Cardiac Electrophysiology: From Cell to Bedside, edited by D. P. Zipes and J. Jalife. Philadelphia: W. B. Saunders, 1994, chapter 35, in press.

    Google Scholar 

  33. Vinet, A., and L. J. Loen. Circulation of activity in a loop of model myocardial cells. Proc. 13th IEEE/EMBC Conf., Orlando, FL, 1991, pp. 508–509.

  34. Vinet, A., and F. A. Roberge. Excitability and repolarization in an ionic model of the cardiac cell membrane.J. Theoret. Biol. 1994, in press.

  35. Vinet, A., and F. A. Roberge. Analysis of an iterative difference equation model of the cardiac cell membrane.J. Theoret. Biol. 1974, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinet, A., Roberge, F.A. The dynamics of sustained reentry in a ring model of cardiac tissue. Ann Biomed Eng 22, 568–591 (1994). https://doi.org/10.1007/BF02368285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368285

Keywords

Navigation