Skip to main content
Log in

Consequences of pruning in morphometry of coronary vasculature

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is a paucity of data on the branching pattern and dimensions of the blood vessels in various organs. The reason for the paucity is undoubtedly the tremendous effort needed to obtain the morphometric data. For those organs whose morphometric data have been determined, pruning was introduced: cutting off branches at succesive generations, measuring what remained, using the statistical data to estimate what were cut off, and adding the estimated data to the measured data to obtain the final results. Evaluation of the effects of pruning was not possible, however, because a full set of precise data did not exist. Now a complete set of morphometric data on the coronary arteries is presented by Kassabet al. (8). Hence we are in a position to evaluate pruningversus accuracy. Among several pruning protocols tried we found a simple, easy-to-follow scheme that seemed to be reasonable. It reduced the labor by 79% when it was applied to the left anterior descending (LAD) artery of the pig, and it caused the following percentage errors based on comparison with the unpruned data. The largest error incurred in the mean diameters of all orders of tree is 7.6%. The corresponding maximum errors in the length and number of elements in all orders are −9.8% and 30.0%, respectively. The estimated error of the total equivalent Poiseuille's resistance for the LAD artery computed from pruned data was 25.2% when compared with that computed from unpruned data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fung, Y.C. Biodynamics: Circulation. New York: Springer-Verlag; 1984.

    Google Scholar 

  2. Gan, R.Z.; Tian, Y.; Yen, R.T.; Kassab, G.S. Morphometry of the dog pulmonary venous tree. J. Appl. Physiol. 75(1):432–440; 1993.

    CAS  PubMed  Google Scholar 

  3. Horsfield, K.; Cumming, G. Morphology of the bronchial tree in man. J. Appl. Physiol. 24:373–383; 1968.

    CAS  PubMed  Google Scholar 

  4. Horsfield, K.; Gordon, W.I. Morphometry of pulmonary veins in man. Lung 159:211–218; 1981.

    CAS  PubMed  Google Scholar 

  5. Horton, R.E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Amer. 56:275–370; 1945.

    Google Scholar 

  6. Jiang, Z.L.; Kassab, G.S.; Fung, Y.C. Diameter-defined Strahler system and connectivity matrix of the pulmonary arterial tree. J. Appl. Physiol. 76(2):882–892; 1994.

    CAS  PubMed  Google Scholar 

  7. Kassab, G.S. Morphometry of the coronary arteries in the pig. Ph.D. thesis. La Jolla: University of California, San Diego; 1990.

    Google Scholar 

  8. Kassab, G.S.; Rider, C.A.; Tang, N.J.; Fung, Y.-C. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265(Heart Circ. Physiol. 34):H350-H365; 1993.

    CAS  PubMed  Google Scholar 

  9. Kassab, G.S.; Lin, D.H.; Fung, Y.C. Morphometry of pig coronary venous system. Am. J. Physiol. In press.

  10. Kassab, G.S.; Imoto, K.; White, F.C.; Rider, C.A.; Fung, Y.-C.; Bloor, C.M. Coronary arterial tree remodeling in right ventricular hypertrophy. Am. J. Physiol. 265(Heart Circ. Physiol. 34):H366-H375; 1993.

    CAS  PubMed  Google Scholar 

  11. Mandelbrot, B.B. The fractal geometry of nature. New York: Freeman; 1983.

    Google Scholar 

  12. Singhal, S.; Henderson, R.; Horsfield, K.; Harding, K.; Cumming, G. Morphometry of the human pulmonary arterial tree. Circ. Res. 23:190–197; 1973.

    Google Scholar 

  13. Strahler, A.N. Hyposometric (area altitude) analysis of erosional topology. Bull. Geol. Soc. Amer. 63:1117–1142; 1952.

    Google Scholar 

  14. VanBavel, E.; Spaan, J.A.E. Branching patterns in the porcine coronary arterial tree: estimation of flow heterogeneity. Circ. Res. 71:1200–1212, 1992.

    CAS  PubMed  Google Scholar 

  15. Weibel, E.R. Design of airways and blood vessels considered as branching trees. In: Crystal, R.G.; West, J.B.; Barnes, P.J.; Cherniak, N.S.; Weibel, E.R., eds. The lung: scientific foundations. New York: Raven Press, 1991: pp. 771–720.

    Google Scholar 

  16. Weibel, E.R. Morphometry of the human lung. Heidelberg: Springer Verlag, 1963.

    Google Scholar 

  17. Yeh, H.C.; Schum, G.M.; Duggan, M.T. Anatomic models of the tracheobronchial and pulmonary regions of the rat. Anat. Rec. 195:483–492; 1979.

    Article  CAS  PubMed  Google Scholar 

  18. Yen, R.T.; Zhuang, F.Y.; Fung, Y.C.; Ho, H.H.; Tremer, H.; Sobin, S.S. Morphometry of cat's pulmonary arterial tree. J. Biomech. Eng. 106:131–136; 1984.

    CAS  PubMed  Google Scholar 

  19. Yen, R.T.; Zhuang, F.Y.; Fung, Y.C.; Ho, H.H.; Tremer, H.; Sobin, S.S. Morphometry of the cat's pulmonary venous tree. J. Appl. Physiol. 55:236–242; 1983.

    CAS  PubMed  Google Scholar 

  20. Zhuang, F.Y.; Fung, Y.C.; Yen, R.T. Analysis of blood flow in cat's lung with detailed anatomical and elasticity data. J. Appl. Physiol. 55(4):1341–1348; 1983.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassab, G.S., Lin, D.H. & Fung, YC.B. Consequences of pruning in morphometry of coronary vasculature. Ann Biomed Eng 22, 398–403 (1994). https://doi.org/10.1007/BF02368246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368246

Keywords

Navigation