Skip to main content
Log in

Assessment of neck tissue fibrosis using an ultrasound palpation system: A feasibility study

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Fibrotic change in the soft tissue of the neck is a common side-effect after radiotherapy treatment for cancers of the head and neck region. The development of a quantitative approach for the assessment of neck tissue stiffness using an ultrasound palpation system (UPS) is reported. A testing protocol was established with the participation of eight normal subjects and four patients who had neck fibrosis after previous radiotherapy to the neck. Six reference sites were assessed on each side of the neck in each subject. Site-dependence, inter-observer variability, and intra-observer variability were further evaluated by measurement of sites 1cm anterior, posterior, superior and inferior to two of the reference sites on each side of the neck, and by repeating measurements using a second observer on the same occasion and using the same observer one week afterwards. The mean tissue Young's modulus for normal subjects was 12.8±3.9 kPa, and that of the radiotherapy-treated patients ranged from 46.4 to 108.3 kPa. The modulus shows limited variation among anatomical sub-sites within the neck. For a confidence level of 95%, there was a variation of ±14.2% for site-dependence, ±15.2% for inter-observer, and ±7.2% for intra-observer tests for the group of normal subjects. The variation in the patients was ±13.6% for site-dependence, and ±13.1% for the inter-observer test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, J., Fan, Y., Li, X., andLi, X. (1999): ‘Tracing echo segment selection method for strain reconstruction’,Ultrasonics,37, pp. 51–57

    Google Scholar 

  • Céspedes, I., Ophir, J., Ponnekanti, H., andMaklad, N. (1993): ‘Elastography: elasticity imaging using ultrasound with application to muscle and breast in-vivo’,Ultrasound Imaging,15, pp. 73–88

    Google Scholar 

  • Daly, C. H., andWheeler, III, J. B. (1971): ‘The use of ultra-sonic thickness measurement in the clinical evaluation of the oral soft tissues’,J. Int. Dent.,21, pp. 418–429

    Google Scholar 

  • Dikstein, S., andHartzshtark, A. (1981): ‘In vivo measurement of some elastic properties of human skin’ inMarks, R., andPayne, P. A. (Eds.). ‘Bioengineering and skin’ (MTP Press, Lancaster) pp. 45–53

    Google Scholar 

  • Ferguson-Pell, M., Hagisawa, S., andMasiello, R. D. (1994): ‘A skin indentation system using a pneumatic bellows’,J. Rehab. Res. Dev.,31, pp. 15–19

    Google Scholar 

  • Goss, S. A., Johnston, R. L., andDunn, F. (1980): ‘Compilation of empirical ultrasonic properties of mammalian tissue’,J. Acoust. Soc. Am.,68, pp. 93–108

    Article  Google Scholar 

  • Hayes, W. C., Keer, L. M., Herrmann, G., andMockros, L. F. (1972): ‘A mathematical analysis for indentation tests of articular cartilage’,J. Biomech.,5, pp. 541–551

    Article  Google Scholar 

  • Horikawa, M., Ebihara, S., Sakai, F., andAkiyama, M. (1993): ‘Non-invasive measurement method for hardness in muscular tissues’,Med. Biol. Eng. Comput.,31, pp. 623–627

    Google Scholar 

  • Huang, D. T., andMak, A. F. T. (1994): ‘A finite element analysis of indentation on a soft tissue layer: The effect of indentor misalignment and non-parallel tissue layer’. Proc. Int. Conf. Biomedical Engineering, Hong Kong, pp. 397–400

  • Kellel, F., Ophir, J., Magee, K., andKrouskop, T. (1998): ‘Elastographic imaging of low-contrast elastic modulus distributions in tissue’,Ultrasound Med. Biol.,24, pp. 409–425

    Google Scholar 

  • Kirk, E., andKvorning S. A. (1949): ‘Quantitative measurements of the elastic properties of the skin and subcutaneous tissues in young and old individuals’,J. Gerontology,4, pp. 273–283

    Google Scholar 

  • Krouskop, T. A., Dougherty, D. R., andVinson, F. S. (1987): ‘A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue’,J. Rehab. Res. Dev.,24, pp. 1–8

    Google Scholar 

  • Krouskop, T. A., Wheeler, T. M., Kallel, F., Garra, B. S., andHall, T. (1998): ‘Elastic moduli of breast and prostate tissues under compression’,Ultrasonic Imaging,20, pp. 260–274

    Google Scholar 

  • Kydd, W. L., Daly, C. H., andNansen, D. (1974): ‘Variation in the response to mechanical stress of human soft tissues as related to age’,J. Prosthet. Dent.,32, pp. 493–500

    Google Scholar 

  • Lerner, R. M., Huang, S. R., andParker, K. J. (1990): ‘“Sonoelasticity’ images derived from ultrasound signals in mechanically vibrated tissues’,Ultrasound Med. Biol.,16, pp. 231–239

    Article  Google Scholar 

  • Lewis, H. E., Mayer, J., andPandiscio, A. A. (1965): ‘Recording Skimfold Calipers for the Determination of Subcutaneous Edema’,J. Lab. Clin. Med.,66, pp. 154–160

    Google Scholar 

  • Mak, A. F. T., Liu, G. H. W., andLee, S. Y. (1994): ‘Biomechanical assessment of below-knee residual limb tissue’,J. Rehab. Res. Dev.,31, pp. 188–198

    Google Scholar 

  • O'Donnell, M., Skovoroda, A. R., Shapo, B. M., andEmelianov, S. Y. (1994): ‘Internal displacement and strain imaging using ultrasonic speckle tracking’,IEEE Trans. Ultrasonics, Ferroelec. Frequency Control,41, pp. 314–325

    Google Scholar 

  • Ophir, J., Céspedes, I., Ponnekanti, H., Yazdi, Y., andLi, X. (1991): ‘Elastography: a quantitative method for imaging the elasticity of biological tissues’,Ultrasonic Imaging,13, pp. 111–134

    Google Scholar 

  • Parker, K. J., Eu, D., Graceswki, S. M., Yeung, F., andLevinson, S. F. (1998): ‘Vibration sonoelastography and the detectability of lesions’,Ultrasound Med. Biol.,24, pp. 1437–1447

    Article  Google Scholar 

  • Pathak, A. P., Silver-Thorn, M. B., Thiefelder, C. A., andPrieto, T. E. (1998): ‘A rate controlled indentor for in vivo analysis of residual limb tissues’,IEEE Trans. Rehab. Eng.,6, pp. 12–20

    Article  Google Scholar 

  • Ponnekanti, H., Ophir, J., andCéspedes, I. (1994): ‘Ultrasonic imaging of the stress distribution in elastic media due to an external compressor’,Ultrasound Med. Biol.,20, pp. 27–33

    Article  Google Scholar 

  • Reynolds, D. (1988): ‘Shape design and interface load analysis for below-knee prosthetic sockets’. PhD dissertation, University of London

  • Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., Fowlker, J. B., andEmelianov, S. Y. (1998): ‘Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics’,Ultrasound Med. Biol.,24, pp. 1419–1435

    Article  Google Scholar 

  • Schade, H. (1912): ‘Untersuchungen zur organfunction des bindegewebes’,Ztschr. f. Exper. Path u. Therapis,11, pp. 369–399

    Google Scholar 

  • Silver-Thorn, M. B. (1991): ‘Prediction and experimental verification of residual limb/prosthetic socket interface pressures for below-knee amputees’. PhD dissertation, Northwestern University, Illinois

    Google Scholar 

  • Skovoroda, A. R., Lubinski, M. A., Emelianov, S. Y., andO'Donnell, M. (1999): ‘Reconstructive elasticity imaging for large deformations’,IEEE Trans. Ultrasonics, Ferroelec. Frequency Control,46, pp. 523–535

    Google Scholar 

  • Steege, J. W., Schnur, D. S., andChildress, D. S. (1987): ‘Prediction of pressure at the below-knee socket interface by finite element analysis’. Proc. Symp. Biomechanics of Normal and Pathological Gait, Boston, AMSE, WAM, pp. 39–43

  • Torres-Moreno, R. (1991): ‘Biomechanical analysis of the interation between the above-knee residual limb and the prosthetic socket’. PhD dissertation, University of Strathclyde, Glasgow

    Google Scholar 

  • Vannah, W. M., andChildress, D. S. (1988): ‘An investigation of the three-dimensional mechanical response of bulk muscular tissue: experimental methods and results’ inSpilker, R. L., andSimon, B. P. (Eds): ‘Computational methods in bioengineering’ (ASME, New York) pp. 493–503

    Google Scholar 

  • Vannah, W. M., Drvaric, D. M., Hastings, J. A., Stand, III, J. A., andHarning, D. M. (1999). ‘A method of residual limb stiffness distribution measurement’,J. Rehab. Res. Dev.,36, web version

  • Yamakoshi, Y., Sato, J., andSato, T. (1990): ‘Ultrasonic imaging of internal vibration of soft tissue under forced vibration’,IEEE Trans. Ultrasonics, Ferroelec. Frequency Control,37, pp. 45–53

    Google Scholar 

  • Zheng, Y. P., andMak, A. F. T. (1996): ‘An ultrasound indentation system for biomechanical properties assessment of soft tissues in-vivo’,IEEE Trans. Biomed. Eng.,43, pp. 912–918

    Google Scholar 

  • Zheng, Y. P., Huang, D. T., andMak, A. F. T. (1997): ‘Experimental studies of indentor misalignment for indentation test on soft tissues’. Proc. 19th IEEE EMBS Int. Conf., Chicago, pp. 2250–2253

  • Zheng, Y. P., andMak, A. F. T. (1999): ‘Effective elastic properties for lower limb soft tissues from manual indentation experiment’,IEEE Trans. Rehab. Eng.,7, pp. 257–267

    Google Scholar 

  • Zheng, Y. P., Mak, A. F. T., andLue, B. K. (1999): ‘Objective assessment of limb tissue elasticity: Development of a manual indentation procedure’,J. Rehab. Res. Dev.,36, pp. 71–85

    Google Scholar 

  • Zheng, Y. P., Choi, Y. K. C., Wong, K., Chan, S., andMak, A. F. T. (2000): ‘Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system’,Ultrasound Med. Biol.,26, pp. 451–456

    Article  Google Scholar 

  • Ziegert, J. C., andLewis, J. L. (1978): ‘In-vivo mechanical properties of soft tissue covering bony prominences’, Trans. ASME,100, pp. 194–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. T. Mak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y.P., Leung, S.F. & Mak, A.F.T. Assessment of neck tissue fibrosis using an ultrasound palpation system: A feasibility study. Med. Biol. Eng. Comput. 38, 497–502 (2000). https://doi.org/10.1007/BF02345743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345743

Keywords

Navigation