Skip to main content
Log in

Effect of generator nonlinearities on the accuracy of respiratory impedance measurements by forced oscillation

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Measurements of respiratory impedance by means of the forced oscillation technique (FOT) are usually made using a loudspeaker as the excitation device. Its nonlinear nature can introduce artifacts that coincide with the frequencies applied to excite the respiratory system, limiting the accuracy of the impedance estimation. In this paper, this hypothesis is evaluated in the case of both a traditional estimator and the unbiased estimator proposed byDaróczy andHantos (1982). A simulated study under apnoea conditions in the pressure range 0.5–3.0 cmH2O peak-to-peak reveals that loudspeaker nonlinearities introduce a characteristic pattern of dispersion in both the resistance and reactance curves that can be significantly decreased (p≃0.03, signtest) by reducing the nonlinearities. A simulation of spontaneous breathing shows the same pattern, and is observed in the case of traditional as well as unbiased estimators. The dispersion is quantified by the mean absolute distance between the theoretical and simulated data and decreases with the reduction of nonlinearities when impedance is estimated with a traditional estimator (from 6.63 to 4.72% in real estimates and from 6.78 to 3.47% in imaginary estimates) as well as with an unbiased estimator (real estimates from 4.84 to 1.57% and 5.61 to 2.06% in imaginary estimates). Studies with normal subjects show the same dispersion pattern, which decreases if the generator nonlinearities are reduced. These results supply substantial evidence that reducing generator nonlinearities can contribute to the production of more reliable mechanical impedance FOT measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beydon, L., Malassiné, P., Lorino, A. M., andMariette, C. (1996): ‘Respiratory resistance by end-inspiratory occlusion and forced oscillations in intubated patients’,J. Appl. Physiol.,80, (4), pp. 1105–1111

    Google Scholar 

  • Brochard, L., Pelle, G., Palmas, J., Brochard, P., Carre, A., Lorino, H., andHarf, A. (1987): ‘Density and frequency dependence of resistance in early airway obstruction’,Am. Rev. Respir. Dis.,135, pp. 579–584

    Google Scholar 

  • Cauberghs, M., andVan de Woestijne, K. P. (1991): ‘Errors in the estimation of respiratory impedance: use of a unbiased estimator’,Eur. Respir. Rev.,1, pp. 206–209

    Google Scholar 

  • Colloms, M. (1991): ‘High performance loudspeakers’ (Pentech Press, London, 4th edition)

    Google Scholar 

  • Daroczy, B., andHantos, Z. (1982): ‘An improved forced oscillatory estimation of respiratory impedance’,Int. J. Biomed. Comp.,13, pp. 221–235

    Google Scholar 

  • Daroczy, B., Fabula, A., andHantos, Z. (1991): ‘Use of noninteger-multiple pseudorandom excitation to minimize nonlinear effects in impedance estimation’,Eur. Respir. Rev.,1, pp. 183–187

    Google Scholar 

  • Delavault, E., Saumon, G., andGeorges, R. (1980): ‘Characterization and validation of forced oscillation technique’,Resp. Physiol.,40, pp. 119–136

    Google Scholar 

  • Dubois, A. B., Brody, A. W., Lewis, D. H., andBurgess, Jr., B. F. (1956): ‘Oscillation mechanics of lungs and chest in man’,J. Appl. Physiol.,8, pp. 587–594

    Google Scholar 

  • Duvivier, C., Peslin, R., Wendling, F., Felicio Da Silva, J., Gremillet, F., Gallina, C., andNavajas, D. (1990): ‘Mesure de l'impédance thoraco-pulmonaire par oscillations forcées: présentation d'un appareil’,Innov. Tech. Biol. Med.,11, pp. 381–399

    Google Scholar 

  • Farré, R., Navajas, D., Peslin, R., Rotger, M., andDuvivier, C. (1989): ‘A correction procedure for the asymmetry of differential pressure transducers in respiratory impedance measurements’,IEEE Trans. Biom. Eng.,36, pp. 1137–1140

    Google Scholar 

  • Farré, R., Rotger, M., andNavajas, D. (1991): ‘Time domain digital filter to improve the signal-to-noise ratio in respiratory impedance measurements’,Med. Biol. Eng. Comput. 29, pp. 18–24

    Google Scholar 

  • Farré, R., Rotger, M., andNavajas, D. (1997): ‘Estimation of random errors in respiratory resistance and reactance measured by the forced oscillation technique’,Eur. Respir. J.,10, pp. 685–689

    Article  Google Scholar 

  • Farré, R., Ferrer, M., Rotger, M., Torres, A., andNavajas, D. (1998): ‘Respiratory mechanics in ventilated COPD patients: forced oscillation versus occlusion techniques’,Eur. Respir. J.,12, pp. 170–176

    Article  Google Scholar 

  • Franken, H. J., Clément, J., andVan de Woestijne, K. P. (1983): ‘Systematic and random errors in the determination of respiratory impedance by means of the forced oscillation technique: a theoretical study’,IEEE Trans. Biom. Eng.,30, pp. 642–651

    Google Scholar 

  • Glison, T. H. (1985): ‘Introduction to system analysis’ (McGraw Hill, New York, United States)

    Google Scholar 

  • Lebecque, P., andStanescu, D. (1997): ‘Respiratory resistance by the forced oscillation technique in asthmatic children and cystic fibrosis patients’,Eur. Respir. J.,10, pp. 891–895

    Google Scholar 

  • Lorino, H., Mariette, C., Karouia, M., andLorino, A. M. (1993): ‘Influence of signal processing on estimation of respiratory impedance’,J. Appl. Physiol.,74, pp. 215–223

    Google Scholar 

  • Lorino, A. M., Beydon, L., Mariette, C., Dahan, E., andLorino, H. (1996): ‘A new correction technique for measuring respiratory impedance through an endotracheal tube’,Eur. Respir. J.,9, pp. 1079–1086

    Article  Google Scholar 

  • Melo, P. L., Werneck, M. M., andGiannella-Neto, A. (1998): ‘Linear servocontroled pressure generator for forced oscillations measurements’,Med. Biol. Eng. Comput.,36, pp. 11–16

    Google Scholar 

  • Michaelson, E. D., Grassman, E. D., andPeters, W. R. (1975): ‘Pulmonary mechanics by spectral analysis of forced random noise’,J. Clin. Invest.,56, pp. 1210–1230

    Google Scholar 

  • Navajas, D., Farré, R., Rotger, M., andPeslin, R. (1988): ‘A new estimator to minimize the error due to breathing in the measurement of respiratory impedance’,IEEE Trans.,BME 35, pp. 1001–1005

    Google Scholar 

  • Navajas, D., Farré, R., Canet, J., Rotger, M., andSanchis, J. (1990): ‘Respiratory input impedance in anesthetized paralyzed patients’,J. Appl. Physiol.,69, pp. 1372–1379

    Google Scholar 

  • Navajas, D., Farré, R., andArmengol, J. (1991): ‘Optimizing respiratory impedance measurements at low frequencies in spontaneously breathing subjects’,Eur. Respir. Rev.,1, pp. 202–205

    Google Scholar 

  • Peslin, R., andFredberg, J. J. (1986): ‘Oscillation mechanics of the respiratory system’ in ‘Handbook of physiology’ (Am. Physiol. Soc., Bethesda, Maryland), vol. 3, part 1, sect. 3

    Google Scholar 

  • Rotger, M., Peslin, R., Farré, R., andDuvivier, C. (1991): ‘Influence of amplitude, phases and frequency content of pseudorandom pressure input on impedance data and their variability’,Eur. Respir. Rev.,1, pp. 178–182

    Google Scholar 

  • Schoukens, J., Pintelon, R., Ouderaa, E., andRenneboog, J. (1988): ‘Survey of excitation signals for FFT based signal analysers’,IEEE Trans. Instr. Meas.,37, pp. 342–352

    Google Scholar 

  • Williams, S. P., Fullton, J. M., Tsai, M. J., Pimmel, R. L., andCollier, M. (1979): ‘Respiratory impedance and derived parameters in young children by forced random noise’,J. Appl. Physiol.,47, pp. 169–174

    Google Scholar 

  • Willim, G., Tomalak, W., Stankiewick, J., Kurzawa, R., Pogorzelski, A., Mazurek, H., Haluszka, J., andPham, Q. T. (1997): ‘Forced oscillations technique in evaluating state of the respiratory system in chilren with chronic lung diseases’Eur. Resp. J.,10, p. 328

    Google Scholar 

  • Wouters, E. F. M. (1991): ‘Data interpretation of total respiratory impedance measurement in clinical practice’,Eur. Respir. Rev.,1, pp. 216–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Giannella-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Melo, P.L., Werneck, M.M. & Giannella-Neto, A. Effect of generator nonlinearities on the accuracy of respiratory impedance measurements by forced oscillation. Med. Biol. Eng. Comput. 38, 102–108 (2000). https://doi.org/10.1007/BF02344697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344697

Keywords

Navigation