Skip to main content
Log in

Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss, L.) and common carp (Cyprinus carpio, L.) during deep hypoxia and subsequent recovery

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Common carp (at 20°C) and rainbow trout (at 15°C) were fitted with an indwelling cannula in the dorsal aorta. The fish were exposed to a controlled decline of waterpO2 followed by 90 min deep hypoxia at 0.3 kPa (carp) or 4.8 kPa (trout). Thereafter, normoxic recovery was monitored in both species for 48 h. At regular intervals blood samples were analysed for glucose, lactate, free fatty acids, adrenaline, noradrenaline and cortisol. The oxygen restriction was maximal in both species and resulted in a significant increase of plasma lactate levels. In carp, adrenaline, noradrenaline and cortisol levels increased to 2, 50, and 753 ng·ml-1 respectively during anoxia, whereas in trout these hormones increased to 12, 8 and 735 ng·ml-1 respectively during hypoxia. In hypoxic trout, the plasma levels of glucose (3 mol·l-1) were increased modestly whereas levels of free fatty acids (0.25 mmol·l-1) were decreased to 0.15 mmol·l-1. In carp, however, a marked and prolonged hyperglycaemia (from 5 to 10 mmol·l-1) and a significant continuous depression of plasma levels of free fatty acids (from 0.4 to 0.2 mmol·l-1) were observed indicating a difference in metabolic organization. It is suggested that hyperglycaemia is likely to be the result of hepatic glycogenolysis, stimulated by circulating catecholamines and a stimulation of gluconeogenesis by cortisol during recovery. The mechanism for the decline of plasma levels of free fatty acids is most probably a reduction of lipolytic activity, which appears to be an adaptation to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

adrenaline

CORT :

cortisol

FFA :

free fatty acid(s)

NA :

noradrenaline

PVP :

polyvinyl pyrrolidon

References

  • Balm PHM (1986) Osmoregulation in teleosts by cortisol and prolactin. Adaptations to low pH environments. PhD thesis, University of Nijmegen, The Netherlands

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1: 3–26

    Article  Google Scholar 

  • Braley H, Anderson TA (1992) Changes in blood metabolite concentrations in response to repeated capture, anaesthesia and blood sampling in the golden perch, Macquaria ambigua. Comp Biochem Physiol 103A: 445–450

    CAS  Google Scholar 

  • Brighenti L, Puviani AC, Gavioli ME, Fabbri E, Ottolenghi C (1991) Interaction of salmon glucagon, glucagon-like peptide, and epinephrine in the stimulation of phosphorylase a activity in fish isolated hepatocytes. Gen Comp Endocrinol 82: 131–139

    Article  CAS  PubMed  Google Scholar 

  • Christiansen DC, Klungsøyr L (1987) Metabolic utilization of nutrients and the effects of insulin in fish. Comp Biochem Physiol 88B: 701–711

    CAS  Google Scholar 

  • Cowey CB, Walton MJ (1989) Intermediary metabolism. In: Fish nutrition. Academic Press, London

    Google Scholar 

  • Dammel-Suard A (1972) Influence d'une anoxie brutale sur la régulation endocrienne du métabolisme glucidique d'un poisson cyprinidé, Tinca vulgaris L. Seance Soc Biol Lyon 166: 394–398

    Google Scholar 

  • Danulat E, Mommsen TP (1990) Norepinephrine: a potent activator of glycogenolysis and gluconeogenesis in rockfish hepatocytes. Gen Comp Endocrinol 78: 12–22

    Article  CAS  PubMed  Google Scholar 

  • Debuyser A, Drews G, Henquin JC (1991) Adrenaline inhibition of insulin release: role of cyclic AMP. Mol Cell Endocrinol 78: 179–186

    Article  CAS  PubMed  Google Scholar 

  • Donaldson EM (1981) The pituitary-interrenal axis as an indicator of stress in fish. In: Pickering AD (ed) Stress and fish. Academic Press, London, pp 11–47

    Google Scholar 

  • Driedzič WR, Hochachka PW (1975) The unanswered question of high anaerobic capabilities of carp white muscle. Can J Zool 53: 706–712

    PubMed  Google Scholar 

  • Dunn JF, Hochachka PW (1986) Metabolic responses of trout (Salmo gairdneri) to acute environmental hypoxia. J Exp Biol 123: 229–242

    CAS  Google Scholar 

  • Dunn JF, Hochachka PW (1987) Turnover rates of glucose and lactate in rainbow trout during acute hypoxia. Can J Zool 65: 1144–1148

    CAS  Google Scholar 

  • Farkas T (1967) Examinations on the fat metabolism in freshwater fighes, the sympathetic nervous system and the mobilization of fatty acids. Ann Inst Biol Tihany Hung 34: 129–138

    CAS  Google Scholar 

  • Galitzky J, Lafontan M, Nordenström J, Arner P (1993) Role of vascular alpha-2 adrenoceptors in regulating lipid mobilization from human adipose tissue. J Clin Invest 91: 1997–2003

    CAS  PubMed  Google Scholar 

  • Greene DHS, Selivonchick DP (1987) Lipid metabolism in fish. Prog Lipid Res 26: 53–85

    CAS  PubMed  Google Scholar 

  • Henderson RJ, Tocher DR (1987) The lipid composition and biochemistry of freshwater fish. Prog Lipid Res 26: 281–347

    CAS  PubMed  Google Scholar 

  • Ince BW, Thorpe A (1977) Plasma insulin and glucose responses to glucagon and catecholamines in the european silver eel (Anguilla anguilla L.). Gen Comp Endocrinol 33: 453–459

    Article  CAS  PubMed  Google Scholar 

  • Janssens PA, Waterman J (1988) Hormonal regulation of gluconeogenesis and glycogenolysis in carp (Cyprinus carpio) liver picces cultured in vitro. Comp Biochem Physiol 91A: 451–455

    CAS  Google Scholar 

  • Johnston IA, Moon TW (1979) Glycolytic and gluconeogenic enzyme activities in the skeletal muscle and liver of a teleost fish (Pleuronectes platessa). Trans Biochem Soc 7: 661–663

    CAS  Google Scholar 

  • Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48: 1–16

    CAS  PubMed  Google Scholar 

  • Knox D, Walton MJ, Cowey CB (1980) Distribution of enzymes of glycolysis and gluconeogenesis in fish tissues. Mar Biol 56: 7–10

    Article  CAS  Google Scholar 

  • Lafontan M, Berlan M, Galitzky J, Lontastruc JL (1992) Alpha-2 adrenoceptors in lipolysis: α2 antagonists and lipid mobilizing strategies. Am J Clin Nutr 55: 219S-227S

    CAS  PubMed  Google Scholar 

  • Lanctin HP, McMorran LE, Driedzič WR (1980) Rates of glucose and lactate oxidation by the perfused isolated trout (Salvelinus fontinalis) heart. Can J Zool 58: 1708–1711

    CAS  PubMed  Google Scholar 

  • Mazeaud F (1973) Recherches sur la régulation des acides gras libres plasmatiques et de la glycémie chez les poissons. PhD Thesis, Paris

  • McKinley SJ, Hazel JR (1993) Epinephrine stimulation of glucose release from perfused trout liver: effects of assay and acclimation temperature. J Exp Biol 177: 51–62

    CAS  Google Scholar 

  • Minick MC, Chavin W (1973) Effects of catecholamines upon serum FFA levels in normal and diabetic goldfish,Carassius auratus L. Comp Biochem Physiol 44A: 1003–1008

    Google Scholar 

  • Mommsen TP, Walsh PJ, Perry SF, Moon TW (1988) Interactive effects of catecholamines and hypercapnia on glucose production in isolated trout hepatocytes. Gen Comp Endocrinol 70: 63–73

    Article  CAS  PubMed  Google Scholar 

  • Moore KH (1985) Fatty acid oxidation in ischemic heart. Mol Physiol 8: 549–563

    CAS  Google Scholar 

  • Nakaki T, Nakadate T, Kato R (1980) α2 modulating insulin release from isolated pancreatic islets. Naunyn Schmiedeberg's Arch Pharmacol 313: 151–153

    CAS  Google Scholar 

  • O'Riordan JLH, Malan PG, Gould RP (1982) Essentials of endocrinology. Blackwell, Oxford

    Google Scholar 

  • Pagnotta A, Milligan CL (1991) The role of blood glucose in the restoration of muscle glycogen during recovery from exhaustive exercise in rainbow trout (Oncorhynchus mykiss) and winter flounder (Pseudopleuronectes americanus). J Exp Biol 161: 489–508

    CAS  PubMed  Google Scholar 

  • Plisetskaya E (1980) Fatty acid levels in blood of cyclostomes and fish. Environ Biol Fish 5: 273–290

    Article  CAS  Google Scholar 

  • Remie R, Zaagsma J (1986) A new technique for the study of vascular presynaptic receptors on freely moving rats. Am J Physiol 251: H463-H467

    CAS  PubMed  Google Scholar 

  • Scheurink AJW, Steffens AB, Bouritius H, Dreteler GH, Bruntink R, Remie R, Zaagsma J (1989) Sympatoadrenal influence on glucose, FFA, and insulin levels in exercising rats. Am J Physiol 256: R161-R168

    CAS  PubMed  Google Scholar 

  • Sheridan MA, Muir NA (1988) Effects of epinephrine and norepinephrine on glucose release from chinook salmon (Oncorhynchus tshawytscha) liver incubated in vitro. J Exp Zool 248: 155–159

    Article  CAS  PubMed  Google Scholar 

  • Smith U (1983) Adrenergic control of lipid metabolism. Acta Med Scand [Suppl] 672: 41–47

    CAS  Google Scholar 

  • Soivio A, Nyholm K, Westman K (1975) A technique for repeated sampling of blood of individual resting fish. J Exp Biol 63: 207–217

    CAS  PubMed  Google Scholar 

  • Spector AA (1968) The transport and utilization of free fatty acids. Ann NY Acad Sci 149: 768–783

    CAS  PubMed  Google Scholar 

  • Suarez RK, Mommsen TP (1987) Gluconeogenesis in teleost fishes. Can J Zool 65: 1869–1882

    CAS  Google Scholar 

  • Thomas S, Perry SF (1992) Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish. J Exp Zool 263: 160–175

    Article  CAS  PubMed  Google Scholar 

  • Turner JD, Wood CM, Clark D (1983) Lactate and proton dynamics in the rainbow trout (Salmo gairdneri). J Exp Biol 104: 247–268

    Google Scholar 

  • Van den Thillart GEEJM (1986) Energy metabolism of swimming trout (Salmo gairdneri). Oxidation rates of palmitate, glucose, lactate, alanine, leucine and glutamate. J Comp Physiol 156: 511–520

    Google Scholar 

  • Van den Thillart GEEJM, Van Raaij MTM (1995) Endogenous fuels; non-invasive vs invasive approaches. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. 4: 33–63

  • van der Boon J, Van den Thillart GEEJM, Addink ADF (1991) The effects of cortisol administration on intermediary metabolism in teleost fish. Comp Biochem Physiol 100A: 47–53

    Google Scholar 

  • Van Dijk PLM, Van den Thillart GEEJM, Balm PHM, Wendelaar Bonga SE (1993) The influence of gradual water acidification on the acid/base status and plasma hormone levels in carp. J Fish Biol 42: 661–671

    Google Scholar 

  • Van Raaij MTM, Breukel BJ, Van den Thillart GEEJM, Addink ADF (1994a) Lipid metabolism of goldfish,Carassius auratus L., during anoxia. Indications for fatty acid chain elongation. Comp Biochem Physiol 107B: 75–84

    Google Scholar 

  • Van Raaij MTM, Bakker E, Nieveen MC, Zirkzee H, Van den Thillart GEEJM (1994b) Energy status and free fatty acid patterns in tissues of common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss L.) during hypoxia and anoxia. Comp Biochem Physiol 109A: 755–767

    Google Scholar 

  • Van Raaij MTM, Van den Thillart GEEJM, Hallemeesch M, Balm PHM, Steffens AB (1995) Effect of arterially infused catecholamines and insulin on plasma glucose and free fatty acids in carp. Am J Physiol 268: R1163-R1170

    PubMed  Google Scholar 

  • White A, Fletcher TC (1989) The effect of physical disturbance, hypoxia and stress hormones on serum components of the plaice, Pleuronectus platessa. Comp Biochem Physiol 93A: 455–461

    CAS  Google Scholar 

  • Wright PA, Perry SF, Moon TW (1989) Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J Exp Biol 147: 169–188

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Langer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Raaij, M.T.M., Van den Thillart, G.E.E.J.M., Vianen, G.J. et al. Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss, L.) and common carp (Cyprinus carpio, L.) during deep hypoxia and subsequent recovery. J Comp Physiol B 166, 443–452 (1996). https://doi.org/10.1007/BF02337889

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337889

Key words

Navigation