Skip to main content
Log in

Relationships between transposable elements based upon the integrase-transposase domains: Is there a common ancestor?

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The integrase domain of RNA-mediated elements (class I) and the transposase domain of DNA-mediated transposable elements (class II) were compared. A number of elements contain the DDE signature, which plays an important role in their integration. The possible relationships betweenmariner-Tc1 andIS elements, retrotransposons, and retroviruses were analyzed from an alignment of this region. Themariner-Tc1 superfamily, and LTR retrotransposons and retroviruses were found to be monophyletic groups. However, theIS elements of bacteria were found in several groups. These results were used to propose an evolutionary history that suggests a common ancestor for some integrases and transposases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argos P, Landy A, Abremski K, Egan JB, Haagard-Ljungquist E, Hoess RH, Khan ML, Kalionis B, Narayana SVL, Pearson III LS, Sternberg N, Leong JM (1986) The intergrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440

    CAS  PubMed  Google Scholar 

  • Atkinson PW, Warren WD, O'Brochta DA (1993) Thehobo transposable element ofDrosophila can be cross-mobilized in houseflies and excises like theAc element of maize. Proc Natl Acad Sci USA 90:9693–9697

    CAS  PubMed  Google Scholar 

  • Bigot Y, Hamelin MH, Capy P, Periquet G (1994)Mariner-like elements in hymenopteran species: insertion site and distribution. Proc Natl Acad Sci USA 91:3408–3412

    CAS  PubMed  Google Scholar 

  • Brezinsky L, Wang GVL, Humphreys T, Hunt J (1990) The transposable elementsUhu from HawaiianDrosophila—member of the widely dispersed class ofTc1 like transposons. Nucleic Acid Res 18:2053–2059

    CAS  PubMed  Google Scholar 

  • Brunet F, Godin F, David JR, Capy P (1994) Themariner transposable element in theDrosophilidae family. Heredity 73:377–385

    PubMed  Google Scholar 

  • Burke WD, Eickbush DG, Xiong Y, Jakubczack J, Eickbush TH (1993) Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol Biol Evol 10: 163–185

    CAS  PubMed  Google Scholar 

  • Bushman FD, Engelman A, Palmer I, Wingfield P, Craigie R (1993) Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc Natl Acad Sci USA 90:3428–3432

    CAS  PubMed  Google Scholar 

  • Caizzi R, Caggese C, Pimpinelli S (1993)Bari-1 a new transposon-like family inDrosophila melanogaster with a unique heterochromatic organization. Genetics 133:335–345

    CAS  PubMed  Google Scholar 

  • Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons inDrosophila and plants:hobo, Activator, andTam3. Cell 66:465–471

    Article  CAS  PubMed  Google Scholar 

  • Capy P, Anxolabehere D, Langin T (1994a) The strange phylogenies of transposable elements: are the horizontal transfer the only explanation? Trends Genet 10:7–12

    Article  CAS  Google Scholar 

  • Capy P, Langin T, Bigot Y, Brunet F, Daboussi MJ, Periquet G, David JR, Hartl DL (1994b) Horizontal transmissionversus ancient origin:mariner in the witness box. Genetica 93:161–170

    Article  CAS  Google Scholar 

  • Cummings MP (1994) Transmission patterns of eukaryotic transposable elements: arguments for and against horizontal transfer. TREE 9:141–145

    Google Scholar 

  • Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A (1990) Evidence for horizontal transmission of theP element betweenDrosophila species. Genetics 124:339–355

    CAS  PubMed  Google Scholar 

  • Dessen P, Fondrat C, Valencien C, Mugnier C (1990) BISANCE: a French service for access to biomolecular sequences databases. Cabios 6:355–356

    CAS  PubMed  Google Scholar 

  • Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase-related genes: new members in transposon-like elements of cilliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91:942–946

    CAS  PubMed  Google Scholar 

  • Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR (1994) Crystal structure of the catalytic domain of the HIV-1 integrase: similarity to other polynucleotidyl transferase. Science 266: 1981–1986

    CAS  PubMed  Google Scholar 

  • Eickbush TH (1992) Transposing without ends: the non-LTR retrotransposable elements. New Biol 4:430–440

    CAS  PubMed  Google Scholar 

  • Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon inCaenorhabditis elegans. Cell 32:55–65

    Article  CAS  PubMed  Google Scholar 

  • Fayet O, Ramond P, Polard P, Frère MF, Chandler M (1990) Functional similarities between retroviruses and theIS3 family of bacterial insertion sequences? Mol Microbiol 4:1771–1777

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5.c. University of Washington, Seattle

    Google Scholar 

  • Ferat JL, LeGouar M, Michel F (1994) Multiple group II self-splicing introns in mobile DNA fromEscherichia coli. CR Acad Sci, Life Sciences 317:141–148

    CAS  Google Scholar 

  • Ferat JL, Michel F (1993) Group II self-splicing introns in bacteria. Nature 364:358–361

    Article  CAS  PubMed  Google Scholar 

  • Finnegan DJ (1989) TheI factor andI-R hybrid dysgenesis inDrosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 503–517

    Google Scholar 

  • Franz G, Savakis C (1991)Minos, a new transposable element fromDrosophila hydei, is a member of theTc1-like family of transposons. Nucleic Acids Res 19:6646–6646

    CAS  PubMed  Google Scholar 

  • Galas DJ, Chandler M (1989) Bacterial insertion sequences. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, pp 109–162

    Google Scholar 

  • Garcia-Fernàndez J, Marfany G, Bagunà J, Salò E (1993) Infiltration ofmariner elements. Nature 364:109–110

    Article  PubMed  Google Scholar 

  • Genetic Computer Group (1991) Program manual for the GCG package, version 7. Madison, WI

  • George DG, Hunt LT, Barker WC (1988) Current methods in sequence comparison and analysis. In: Schlesinger DH (ed) Macromolecular sequencing and synthesis. Alan R Liss, New York, pp 127–149

    Google Scholar 

  • Haring MA, Gao J, Volbeda T, Rommens CM, Nijkamp HJ, Hille J (1989) A comparative study ofTam3 andAc transposition in transgenic tobacco and petunia plants. Plant Mol Biol 13:189–201

    Article  CAS  PubMed  Google Scholar 

  • Haring MA, Teeurven-de Vroomen, Nijkamp HL Hille J (1991) Transactivation of an artificial dTam3 transposable element in transgenic tobacco plants. Plant Mol Biol 16:39–47

    CAS  PubMed  Google Scholar 

  • Hartl DL, Sawyer SA (1988) Why do unrelated insertion sequences occur together in the genome ofEscherichia coli? Genetics 118: 537–541

    CAS  PubMed  Google Scholar 

  • Hehl R, Nacken WK, Krause A, Saedler H, Sommer H (1991) Structural analysis ofTam3, a transposable element fromAntirrhinum majus, reveals homologies to theAc element from maize. Plant Mol Biol 16:369–371

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JW, Medhora MM, Hard DL (1986) Molecular structure of a somatically unstable element inDrosophila. Proc Natl Acad Sci USA 83:8684–8688

    CAS  PubMed  Google Scholar 

  • Jahn CL, Doktor SZ, Frels JS, Jaraczewski JW, Krikau MF (1993) Structures of theEuplotes crassus Tec1 andTec2 elements: identification of putative transposase coding regions. Gene 133:71–78

    Article  CAS  PubMed  Google Scholar 

  • Khan E, Mack JPG, Katf RA, Kulkosky J, Skalka AM (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19:851–860

    CAS  PubMed  Google Scholar 

  • Kidwell MG (1993) Lateral transfer in natural populations of eukaryotes. Ann Rev Genet 27:645–662

    Google Scholar 

  • Kulkosky J, Jones KS, Katz RA, Mack JPG, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12:2331–2338

    CAS  PubMed  Google Scholar 

  • Langin T, Capy P, Daboussi MJ (1995) The transposable element,impala, a fungal member of theTc1-mariner superfamily. Mol Gen Genet 246:19–28

    Article  CAS  PubMed  Google Scholar 

  • Lenich AG, Glasgow AC (1994) Amino-acid sequence homology betweenPiv, an essential protein in site-specific inversion inMoraxella lacunata, and transposases of an unusual family of insertion elements. J Bact 176:4160–4164

    CAS  PubMed  Google Scholar 

  • Liao LW, Rosenzweig B, Hirsh D (1983) Analysis of a transposable element inCaenorhabditis elegans. Proc Natl Acad Sci USA 80: 3585–3589

    CAS  PubMed  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605

    Article  CAS  PubMed  Google Scholar 

  • Lidholm DA, Gudmundsson GH, Boman HG (1991) A highly repetitivemariner-like element in the genome ofHyalophora cecropia. J Biol Chem 266:11518–11521

    CAS  PubMed  Google Scholar 

  • Maruyama K, Hard DL (1991a) Evolution of the transposable elementmariner inDrosophila species. Genetics 128:319–329

    CAS  Google Scholar 

  • Maruyama K, Hard DL (1991b) Evidence for interspecific transfer of the transposable elementmariner betweenDrosophila andZaprionus. J Mol Evol 33:514–524

    Article  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    CAS  PubMed  Google Scholar 

  • McDonald JF (1992) Transposable element and evolution. Special issue of Genetica 86

  • Michel F, Lang BF (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316:641–643

    Article  CAS  PubMed  Google Scholar 

  • Perkins HD, Howells AJ (1992) Genomic sequences with homology to theP element ofDrosophila melanogaster occur in the blowflyLucilia cuprina. Proc Natl Acad Sci USA 89:10753–10757

    CAS  PubMed  Google Scholar 

  • Polard P, Chandler M (1995) Bacterial transposase and retroviral integrases. Mol Microbiol 15:13–23

    CAS  PubMed  Google Scholar 

  • Radice AD, Bugaj B, Fitch DHA, Emmons SW (1994) Widespread occurrence of theTc1 transposon family: properties ofTc1-like transposons from teleost fish. Mol Gen Genet 244:606–612

    Article  CAS  PubMed  Google Scholar 

  • Rezsöhazy R, Hallet B, Delcour J, Mahillon J (1993) The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol Microbiol 9:1283–1295 Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245

    PubMed  Google Scholar 

  • Robertson HM (1995) Themariner-Tc1 superfamily of transposons in animals. J Insect Physiol (in press)

  • Rosenzweig B, Liao LW, Hirsh D (1983) Sequence of theC. elegans transposable elementTc1. Nucleic Acids Res 11:4201–4209

    CAS  PubMed  Google Scholar 

  • Schwartz E, Kroeger M, Rak B (1988)IS50: distribution, nucleotide sequence, and phylogenetic relationship of a newE. coli insertion element. Nucleic Acids Res 16:6789–6802

    CAS  PubMed  Google Scholar 

  • Serre MC, Turlan C, Bortolin ML, Chandler M (1995) Mutagenesis of theIS1 transposase: importance of his-arg-tyr for activity. J Bacteriol 177:5070–5077

    CAS  PubMed  Google Scholar 

  • Skalka AM (1993) Retroviral DNA integration: lessons for transposon shuffling. Gene 135:175–182

    Article  CAS  PubMed  Google Scholar 

  • Swofford (1993) Phylogenetic analysis using parsimony. Version 3.1.1. Smithsonian Institution, Washington, DC

    Google Scholar 

  • Vos JC, Plasterk RHA (1994)Tc1 transposase ofCaenorhabditis elegans is an endonuclease with a bipartite binding domain. EMBO J 13:6125–6132

    CAS  PubMed  Google Scholar 

  • Warren WD, Atkinson PW, O'Brochta DA (1994) TheHermes transposable element from house fly,Musca domestica, is a short inverted repeat-type element of thehobo, Ac andTam3 (hAT) element family. Genet Res Camb 64:87–97

    CAS  Google Scholar 

  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role forcopia-like elements in the evolution of the gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796

    CAS  PubMed  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    CAS  PubMed  Google Scholar 

  • Zimmerly S, Guo H, Perlman PS, Lambowitz A (1995) Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545–554

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: P. Capy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capy, P., Vitalis, R., Langin, T. et al. Relationships between transposable elements based upon the integrase-transposase domains: Is there a common ancestor?. J Mol Evol 42, 359–368 (1996). https://doi.org/10.1007/BF02337546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337546

Key words

Navigation