Skip to main content
Log in

Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Electrical conduction in sheep Purkinje fibers has been blocked by three different procedures: (I) 1mm 2–4-dinitrophenol, (II) 3.5mm n-Heptan-1-ol (heptanol), and (III) treatment by a hypotonic (120 mOsmoles) Ca2+-free solution for half an hour, followed by return to normal conditions. The gap junction morphology was analyzed quantitatively in freezefracture replicas and compared in electrically conducting and nonconducting fibers. It is found that the three uncouplers of cell-to-cell conduction induce consistent and statistically significant alterations of the gap junction structure. The investigated morphological criteria: (a) P-face junctional particle diameter, control value 8.18±0.70 nm (mean±sd), (b) P-face junctional particles center-to-center spacing, control value 10.23±1.57 nm, and (c) E-face pits spacing, control value 9.45±0.98 nm, are, respectively, decreased to 7.46±0.62 nm, 9.25±1.34 nm and 8.67±1.13 nm in Purkinje fibers with complete conduction blocks. All three gap junctional dimensions are seen to decline progressively with time from the onset of an uncoupling treatment towards stable minima reached in half an hour. The observed morphological transitions appear related to the electrical uncoupling for the following reasons: partial electrical uncoupling results in values of the gap junctional dimensions that are intermediate between those measured in electrically coupled and uncoupled preparations, and the three morphological indices are seen to increase again towards control values very soon after electrical conduction has been re-established. It is concluded that the junctional channels closure on electrical uncoupling correlates with a measurable (−0.72±0.01 nm, difference of the means±se) decrease of the junctional particle diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baldwin, K.M. 1979. Cardiac gap junction configuration after an uncoupling treatment as a function of time.J. Cell Biol. 82:66–75

    Article  CAS  PubMed  Google Scholar 

  • Barr, L., Dewey, M.M., Berger, W. 1965. Propagation of action potentials and the structure of the nexus in cardiac muscle.J. Gen. Physiol. 48:797–823

    Article  CAS  PubMed  Google Scholar 

  • Benedetti, E.L., Emmelot, P. 1965. Electron microscopic observations on negatively stained plasma membranes isolated from rat liver.J. Cell Biol. 26:15–28

    Article  Google Scholar 

  • Benedetti, E.L., Emmelot, P. 1968. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes.J. Cell Biol. 38:15–28

    Article  CAS  PubMed  Google Scholar 

  • Bernardini, G., Peracchia, C., Peracchia, L.L. 1982. Reversible gap junction, crystallization and electrical uncoupling by heptanol.Biophys. J. 37:285a

    Google Scholar 

  • Branton, D., Bullivant, S., Gilula, N.B., Karnovsky, M.J., Moor, H., Muehlethaler, K., Northcote, D.H., Packer, L., Satir, B., Speth, V., Staehelin, L.A., Steere, R.L., Weinstein, R.S. 1975. Freeze-etching nomenclauture.Science 190:54–56

    CAS  PubMed  Google Scholar 

  • Caesar, R., Edwards, G.A., Ruska, H. 1958. Electron microscopy of the impulse conducting system of the sheep heart.Z. Zellforsch. Mikrosk. Anat. 48:698–719

    Article  CAS  PubMed  Google Scholar 

  • Caspar, D.L.D., Goodenough, D.A., Makowski, L., Phillips, W.C. 1977. Gap junction structures. I. Correlated electron microscope and X-ray diffraction.J. Cell Biol. 74:605–628

    Article  CAS  PubMed  Google Scholar 

  • Dahl, G., Isenberg, G. 1980. Decoupling of heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure.J. Membrane Biol. 53:63–75

    Article  CAS  Google Scholar 

  • Délèze, J. 1962. Effet des ions calcium sur le rétablissement du potentiel de repos après lésion des fibres cardiaques.Helv. Physiol. Pharmacol. Acta 20:C47

    Google Scholar 

  • Délèze, J. 1965. Calcium ions and the healing-over of heart fibres.In: Electrophysiology of the Heart. B. Taccardi and G. Marchetti, editors. pp. 147–148. Pergamon, Oxford

    Google Scholar 

  • Délèze, J. 1970. The recovery of resting potential and input resistance in sheep heart injured by knife or laser.J. Physiol. (London) 208:547–562

    Google Scholar 

  • Délèze, J., Hervé, J.C. 1983a. Correlation of cell-to-cell electrical uncoupling in sheep Purkinje fibres with changes in gap junction morphology.J. Physiol. (London) 334:58P

    Google Scholar 

  • Délèze, J., Hervé, J.C. 1983b. Changements de conformation des jonctions communicantes des fibres de Purkinje de mouton lors du découplage électrique.J. Physiol. (Paris) (Abstract, In press)

  • De Mello, W.C. 1979. Effect of 2-4-dinitrophenol on intracellular communication in mammalian cardiac fibres.Pfluegers Arch. 380:267–276

    Article  Google Scholar 

  • Dewey, M.M., Barr, L. 1962. Intercellular connection between smooth muscle cells: The nexus.Science 137:670–672

    Google Scholar 

  • Dewey, M.M., Barr, L. 1964. A study of the structure and distribution of the nexus.J. Cell Biol. 23:553–585

    Article  CAS  PubMed  Google Scholar 

  • Dreifuss, J.J., Girardier, L., Forssmann, W.G. 1966. Etude de la propagation de l'excitation dans le ventricule de rat au moyen de solutions hypertoniques.Pfluegers Arch. 292:13–33

    CAS  Google Scholar 

  • Hervé, J.C., Délèze, J. 1982. Quantitative ultrastructural analysis in nexuses of cardiac Purkinje fibers.Biol. Cell 44:16a

    Google Scholar 

  • Hodgkin, A.L., Rushton, W.A.H. 1946. The electrical constants of crustacean nerve fibre.Proc. R. Soc. London B. 133:444–479

    Google Scholar 

  • Johnston, M.F., Simon, S.A., Ramón, F. 1980. Interaction of anaesthetics with electrical synapses.Nature (London) 286:498–500

    CAS  Google Scholar 

  • Loewenstein, W.R. 1966. Permeability of membrane junctions.Ann. N.Y. Acad. Sci. 137:441–472

    CAS  PubMed  Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel. Physiol. Rev.61:829–913

    CAS  PubMed  Google Scholar 

  • Loewenstein, W.R., Kanno, Y., Socolar, S.J. 1978. Quantum jumps of conductance during formation of membrane channels at cell-cell junction.Nature (London) 274:133–136

    Article  CAS  Google Scholar 

  • Loewenstein, W.R., Nakas, M., Socolar, S.J. 1967. Junctional membrane uncoupling. Permeability transformations at a cell membrane junction.J. Gen. Physiol. 50:1865–1891

    Article  CAS  PubMed  Google Scholar 

  • Makowski, L., Caspar, D.L.D., Phillips, W.C., Goodenough, D.A. 1977. Gap junction structures. II. Analysis of the X-ray diffraction data.J. Cell Biol. 74:629–645

    Article  CAS  PubMed  Google Scholar 

  • McNutt, N.S., Weinstein, R.S. 1970. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study.J. Cell Biol. 47:666–688

    Article  CAS  PubMed  Google Scholar 

  • McNutt, N.S., Weinstein, R.S. 1973. Membrane ultrastructure at mammalian intercellular junctions.Prog. Biophys. Mol. Biol. 26:45–101

    CAS  PubMed  Google Scholar 

  • Mobley, B.A., Page, E. 1972. The surface area of sheep cardiac Purkinje fibres.J. Physiol. (London) 220:547–563

    CAS  Google Scholar 

  • Muir, A.R. 1967. The effects of divalent cations on the ultrastructure of the perfused rat heart.J. Anat. 101:239–261

    CAS  PubMed  Google Scholar 

  • Nishiye, H., Mashima, H., Ishida, A. 1978. Binding of45Ca to intercalated discs of cardiac muscles studied by electron microscope autoradiography.Jpn. J. Physiol. 28:807–817

    CAS  PubMed  Google Scholar 

  • Nishiye, H., Mashima, H., Ishida, A. 1980. Ca binding of isolated cardiac nexus membranes related to intercellular uncoupling.Jpn. J. Physiol. 30:131–136

    CAS  PubMed  Google Scholar 

  • Oliveira-Castro, G.M., Loewenstein, W.R. 1971. Junctional membrane permeability: Effects of divalent cations.J. Membrane Biol. 5:51–77

    Article  CAS  Google Scholar 

  • Peracchia, C. 1977. Gap junctions: Structural changes after uncoupling procedures.J. Cell Biol. 72:628–641

    Article  CAS  PubMed  Google Scholar 

  • Peracchia, C. 1978. Calcium effects on gap junction structure and cell coupling.Nature (London) 271:669–671

    Article  CAS  Google Scholar 

  • Peracchia, C. 1980. Structural changes of gap junction permeation.Int. Rev. Cytol. 66:81–146

    CAS  PubMed  Google Scholar 

  • Peracchia, C., Dulhunty, A.F. 1976. Low resistance junctions in crayfish. Structural changes with functional uncoupling.J. Cell Biol. 70:419–439

    Article  CAS  PubMed  Google Scholar 

  • Peracchia, C., Peracchia, L.L. 1980a. Gap junction dynamics: Reversible effects of divalent cations.J. Cell Biol. 87:708–718

    CAS  PubMed  Google Scholar 

  • Peracchia, C., Peracchia, L.L. 1980b. Gap junction dynamics: Reversible effects of hydrogen ions.J. Cell Biol. 87:719–727

    CAS  PubMed  Google Scholar 

  • Politoff, A.L., Pappas, G.D. 1972. Mechanisms of increase in coupling resistance at electrotonic synapses of the crayfish septate axon.Anat. Rec. 172:384–385

    Google Scholar 

  • Politoff, A.L., Socolar, S.J., Loewenstein, W.R. 1969. Permeability of a cell membrane junction. Dependence on energy metabolism.J. Gen. Physiol. 53:498–515

    Article  CAS  PubMed  Google Scholar 

  • Purkinje, J.E. 1845. Mikroskopisch-neurologische Beobachtungen.Arch. Anat. Physiol. Leipzig. pp. 281–295

  • Ramón, F., Zampighi, G. 1980. On the electrotonic coupling mechanism of crayfish segmented axons: Temperature dependence of junctional conductance.J. Membrane Biol. 54:165–171

    Article  Google Scholar 

  • Revel, J.P., Karnovsky, M.J. 1967. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver.J. Cell Biol. 33:C7-C12

    Article  CAS  PubMed  Google Scholar 

  • Rose, B., Loewenstein, W.R. 1976. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin.J. Membrane Biol. 28:87–119

    Article  CAS  Google Scholar 

  • Rose, B., Rick, R. 1978. Intracellular pH, intracellular free Ca, and junctional cell-cell coupling.J. Membrane Biol. 44:377–415

    Article  CAS  Google Scholar 

  • Rose, B., Simpson, I., Loewenstein, W.R. 1977. Calcium ion produces graded changes in permeability of membrane channels in cell junction.Nature (London) 267:625–627

    CAS  Google Scholar 

  • Shibata, Y., Page, E. 1981. Gap junctional structure in intact and cut sheep cardiac Purkinje fibers: A freeze-fracture study of Ca2+-induced resealing.J. Ultrastruct. Res. 75:195–204

    Article  CAS  PubMed  Google Scholar 

  • Socolar, S.J. 1977.Appendix: The coupling coefficient as an index of junctional conductance.J. Membrane Biol. 34:29–37

    Article  CAS  Google Scholar 

  • Socolar, S.J., Loewenstein, W.R. 1979. Methods for studying transmission through permeable cell-to-cell junctions.In: Methods in Membrane Biology. E. Korn, editor. Vol. 10, pp. 123–179. Plenum, New York

    Google Scholar 

  • Thomas, L.J. 1960. Increase of labeled calcium uptake in heart muscle during potassium lack contracture.J. Gen. Physiol. 43:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Truex, R.C., Copenhaver, W.M. 1947. Histology of the moderator band in man and other mammals with special reference to the conduction system.Am. J. Anat. 80:173–202

    Article  Google Scholar 

  • Unwin, P.N.T., Zampighi, G. 1980. Structure of the junction between communicating cells.Nature (London) 283:545–549

    Article  CAS  Google Scholar 

  • Vassalle, M. 1965. Cardiac pacemaker potentials at different extra- and intra-cellular K concentrations.Am. J. Physiol. 208:770–775

    CAS  PubMed  Google Scholar 

  • Weidmann, S. 1952. The electrical constants of Purkinje fibres.J. Physiol. (London) 118:348–360

    CAS  Google Scholar 

  • Winegrad, S. 1971. Studies of cardiac muscle with a high permeability to calcium produced by treatment with ethylenediaminetetraacetic acid.J. Gen. Physiol. 58:71–93

    CAS  PubMed  Google Scholar 

  • Woodbury, J.W., Crill, W.E. 1961. On the problem of impulse conduction in the atrium.In: Nervous Inhibition. E. Florey, editor. pp. 124–135. Pergamon, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Délèze, J., Hervé, J.C. Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart. J. Membrain Biol. 74, 203–215 (1983). https://doi.org/10.1007/BF02332124

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02332124

Key Words

Navigation