Skip to main content
Log in

Recent advances in understanding thyroid hormone receptor coregulators

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Thyroid hormones (L-triiodothyronine, T3;L-tetraiodothyronine, T4) regulate normal cellular growth and development, and general metabolism as well. Their various actions are mediated by the thyroid hormone receptor, a ligand-dependent transcriptional factor belonging to the nuclear hormone receptor superfamily. The recent discovery of coregulators (coativators, corepressors, and cointegrators) has greatly enhanced our understanding of thyroid hormone receptor functions. Hence we review and discuss, in brief, the potential role of thyroid hormone receptor coregulators involved in diverse cellular activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan X-Y, Sauter G, Kallioniemi O-P, Trent JM, Meltzer PS. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968;1997.

    Article  PubMed  Google Scholar 

  2. Burris TP, Nawaz Z, Tsai M-J, O'Malley BW. Nuclear hormone receptor-associated protein that inhibits transcription by the thyroid hormone and retinoid acid receptors. Proc Natl Acad Sci USA 92:9525–9529;1995.

    PubMed  Google Scholar 

  3. Chen JD, Evans RM. A transcriptional corepressor that interacts with nuclear hormone receptors. Nature 377:454–457;1995.

    Article  PubMed  Google Scholar 

  4. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580;1997.

    Article  PubMed  Google Scholar 

  5. Chin WW, Yen PM. Editorial: T3 or not T3 — The slings and arrows of outrageous TR function. Endocrinol 137:387–389;1996.

    Article  Google Scholar 

  6. Chin WW, Yen PM. Molecular mechanisms of nuclear thyroid hormone action. In: Braverman LE, ed. Contemporary Endocrinology: Diseases of the Thyroid. Totowa, NJ, Humana Press Inc., 1–15;1998.

    Google Scholar 

  7. Evans RM. The steroid and thyroid hormone receptor superfamily. Science 240:889–895;1988.

    PubMed  Google Scholar 

  8. Feng W, Ribeiro RCJ, Wagner RL, Nguyen H, Apriletti JW, Fletterick RJ, Baxter JD, Kushner PJ, West BL. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1749;1998.

    Article  PubMed  Google Scholar 

  9. Glass CK, Rose DW, Rosenfeld MG. Nuclear receptor coactivators. Curr Opin Cell Biol 9:222–232;1997.

    Article  PubMed  Google Scholar 

  10. Hayashi Y, Ohmori S, Ito T, Seo H. A splicing variant of steroid receptor coactivator-1 (SRC-1E): The major isoform of SRC-1 to mediate thyroid hormone action. Biochem Biophys Res Commun 236:83–87;1997.

    Article  PubMed  Google Scholar 

  11. Hollenberg A, Monden T, Madura J, Lee K, Wondisford FE. Function of nuclear co-repressor protein on thyroid hormone response elements is regulated by the receptor A/B domain. J Biol Chem 271:28516–28520;1996.

    Article  PubMed  Google Scholar 

  12. Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17:2735–2744;1997.

    PubMed  Google Scholar 

  13. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamel Y, Soderstrom M, Glass CK, Rosenfeld MG. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404;1995.

    Article  PubMed  Google Scholar 

  14. Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol 10:1167–1177;1996.

    Article  PubMed  Google Scholar 

  15. Huang ZJ, Edery I, Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factor. Nature 364:259–262;1993.

    Article  PubMed  Google Scholar 

  16. Imhof A, Yang X-J, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H. Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7:689–692;1997.

    Article  PubMed  Google Scholar 

  17. Kalkhoven E, Valentine JE, Heery DM, Parker MG. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J 17:232–243;1998.

    Article  PubMed  Google Scholar 

  18. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin S-C, Heyman R, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:1–12;1996.

    Article  PubMed  Google Scholar 

  19. Kim HJ, Lee SK, Na SY, Choi HS, Lee JW. Molecular cloning of xSRC-3, a novel transcription coactivator from Xenopus, that is related to AIB1, p/CIP, and TIF2. Mol Endocrinol 12:1038–1047;1998.

    Article  PubMed  Google Scholar 

  20. Lazar MA. Thyroid hormone receptors: Multiple forms, multiple possibilities. Endocr Rev 14:184–193;1993.

    Article  PubMed  Google Scholar 

  21. Lee JW, Ryan F, Swaffild JC, Johnston SA, Moore DD. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 374:91–94;1995.

    Article  PubMed  Google Scholar 

  22. Lee S-K, Kim H-J, Na S-Y, Kim TS, Choi H-S, Im S-Y, Lee JW. Steroid receptor coactivator-1 coactivating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J Biol Chem 273:16651–16654;1998.

    Article  PubMed  Google Scholar 

  23. Leers J, Treuter E, Gustafsson JA. Mechanistic principles in NR box-dependent interaction between nuclear hormone receptors and the coactivator TIF2. Mol Cell Biol 18:6001–6013;1998.

    PubMed  Google Scholar 

  24. Li H, Gomes PJ, Chen JD. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci USA 94:8479–8484;1997.

    Article  PubMed  Google Scholar 

  25. Li H, Chen JD. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem 273:5948–5954;1998.

    Article  PubMed  Google Scholar 

  26. Lindebro MC, Poellinger L, Whitelaw ML. Protein-protein interaction via PAS domains: Role of the PAS domain in positive and negative regulation of the bHLH/PAS dioxin receptor-Arnt transcription factor complex. EMBO J 14:3528–3539;1995.

    PubMed  Google Scholar 

  27. Monden T, Wondisford FE, Hollenberg AN. Isolation and characterization of a novel ligand-dependent thyroid hormone receptor-coactivating protein. J Biol Chem 272:29834–29841;1997.

    Article  PubMed  Google Scholar 

  28. Na S-Y, Lee S-K, Han S-J, Choi H-S, Im S-Y, Lee JW. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kB-mediated transactivations. J Biol Chem 273:10831–10834;1998.

    Article  PubMed  Google Scholar 

  29. O'Malley BW, Tsai M-J. Molecular pathways of steroid receptor action. Biol Repr 46:163–167;1992.

    Article  Google Scholar 

  30. Onate SA, Tsai SY, Tsai M-J, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357;1995.

    PubMed  Google Scholar 

  31. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai M-J, Edwards DP, O'Malley BW. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 273:12101–12108;1998.

    Article  PubMed  Google Scholar 

  32. Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription? Cell 89:325–328;1997.

    Article  PubMed  Google Scholar 

  33. Pellequer J-L, Wager-Smith KA, Kay SA, Getzoff ED. Photoactive yellow protein: A structural prototype for the three-dimensional fold of the PAS domain superfamily. Proc Natl Acad Sci USA 95:5884–5890;1998.

    Article  PubMed  Google Scholar 

  34. Ponting CP, Aravind L. PAS: A multifunctional domain family comes to light. Curr Biol 7:R674-R677;1997.

    Article  PubMed  Google Scholar 

  35. Powers CA, Mathur M, Raaka BM, Ron D, Samuels HH. TLS (translocated-in-liposarcoma) is a high-afffinity interactor for steroid, thyroid hormone, and retinoid receptors. Mol Endocrinol 12:4–18;1998.

    Article  PubMed  Google Scholar 

  36. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839;1998.

    Article  PubMed  Google Scholar 

  37. Sande S, Privalsky ML. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of nuclear hormone receptors. Mol Endocrinol 10:813–825;1996.

    Article  PubMed  Google Scholar 

  38. Schmidt S, Baniahmad A, Eggert M, Schneider S, Renkawitz R. Multiple receptor interaction domains of GRIP1 function in synergy. Nucl Acids Res 26:1191–1197;1998.

    Article  PubMed  Google Scholar 

  39. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai M-J, O'Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198;1997.

    Article  PubMed  Google Scholar 

  40. Swanson HI, Bradfield CA. The AH-receptor: Genetics, structure and function. Pharmacogenet 3:213–230;1993.

    Google Scholar 

  41. Takeshita A, Yen PM, Misiti S, Cardona GR, Liu Y, Chin WW. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator. Endocrinol 137:3594–3597;1996.

    Article  Google Scholar 

  42. Takeshita A, Cardona GR, Koibuchi N, Suen C-S, Chin WW. TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J Biol Chem 272:27629–27634;1997.

    Article  PubMed  Google Scholar 

  43. Takeshita A, Yen PM, Ikeda M, Cardona GR, Liu Y, Koibuchi N, Norwitz ER, Chin WW. Thyroid hormone response elements differentially modulate the interactions of thyroid hormone receptors with two receptor binding domains in the steroid receptor coactivator-1. J Biol Chem 273:21554–21562;1998.

    Article  PubMed  Google Scholar 

  44. Torchia J, Rose DW, Inostroza J, Kamei Y, Wesin S, Glass CK, Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684;1997.

    Article  PubMed  Google Scholar 

  45. Tsai M-J, O'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem 63:451–486;1994.

    Article  PubMed  Google Scholar 

  46. Voegel JJ, Heine MJS, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15:3667–3675;1996.

    PubMed  Google Scholar 

  47. Voegel JJ, Heine MJS, Tini M, Vivat V, Chambon H. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and independent pathways. EMBO J 17:507–519;1998.

    Article  PubMed  Google Scholar 

  48. Wolffe AP, Pruss D. Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell 84:817–819;1996.

    Article  PubMed  Google Scholar 

  49. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai M-J, O'Malley BW. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925;1998.

    Article  PubMed  Google Scholar 

  50. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324;1996.

    Article  PubMed  Google Scholar 

  51. Yen PM, Chin WW. New advances in understanding the molecular mechanisms of thyroid hormone action. Trends Endocrinol Metab 5:65–72;1994.

    Article  Google Scholar 

  52. Yen PM, Chin WW. Molecular mechanisms of dominant negative activity by nuclear hormone receptors. Mol Endocrinol 8:1450–1454;1994.

    Article  PubMed  Google Scholar 

  53. Zamir I, Dawson J, Lavinsky RM, Glass CK, Rosenfeld MG, Lazar MA. Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Proc Natl Acad Sci USA 94:14400–14405;1997.

    Article  PubMed  Google Scholar 

  54. Zhulin IB, Taylor BL, Dixon R. PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends Biochem Sci 22:331–333;1997.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HJ., Yen, P.M. Recent advances in understanding thyroid hormone receptor coregulators. J Biomed Sci 6, 71–78 (1999). https://doi.org/10.1007/BF02256437

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256437

Key Words

Navigation