Skip to main content
Log in

Cocaine binding sites in fetal rat brain: implications for prenatal cocaine action

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Binding of [3H]cocaine to membrane preparations from whole fetal rat brain was studied. High-affinity binding (10 nM cocaine) was detected as early as gestational day (GD) 15 and steadily increased across subsequent development. Saturation studies comparing [3H]cocaine binding at GD20 and adulthood yielded similar KD values, and LIGAND analyses favored a two-site model if an extended range of [3H]cocaine concentrations was used. Various monoamine uptake inhibitors displaced labeled cocaine with potencies consistent with the idea that [3H]cocaine labels the dopamine (DA), serotonin (5-HT), and possibly also the norepinephrine (NE) transporters in whole fetal brain preparations. Synaptosomal DA uptake was well developed by GD20, as was the potency of cocaine to inhibit such uptake. The results indicate that functional, monoamine transporter related cocaine binding sites are present in the fetal rat brain. Such sites are likely to play an important role in mediating the direct interactions of prenatally-administered cocaine with developing monoaminergic systems in both animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari HM, Azmitia EC (1992) Increased tyrosine hydroxylase immunoreactivity in the rat cortex following prenatal cocaine exposure. Dev Brain Res 66:277–281

    Article  Google Scholar 

  • Akbari HM, Kramer HK, Whitaker-Azmitia PM, Spear LP, Azmitia EC (1992) Prenatal cocaine exposure disrupts the development of the serotonergic system. Brain Res 572:57–63

    Article  PubMed  Google Scholar 

  • Andersen PH (1989) The dopamine uptake inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur J Pharmacol 166:493–504

    Article  PubMed  Google Scholar 

  • Biegon A, Dillon K, Volkow ND, Hitzemann RJ, Fowler JS, Wolf AP (1992) Quantitative autoradiography of cocaine binding sites in human brain postmortem. Synapse 10:126–130

    Article  PubMed  Google Scholar 

  • Boja JW, Carroll FI, Rahman MA, Philip A, Lewin AH, Kuhar MJ (1990) New, potent cocaine analogs: ligand binding and transport studies in rat striatum. Eur J Pharmacol 184:329–332

    Article  PubMed  Google Scholar 

  • Boja JW, Patel A, Carroll FI, Rahman MA, Philip A, Lewin AH, Kopajtic TA, Kuhar MJ (1991) [125I]RTI-55: a potent ligand for dopamine transporters. Eur J Pharmacol 194:133–134

    Article  PubMed  Google Scholar 

  • Boja JW, Cline EJ, Carroll FI, Lewin AH, Philip A, Dannals R, Wong D, Scheffel U, Kuhar MJ (1992) High potency cocaine analogs: neurochemical, imaging, and behavioral studies. Ann NY Acad Sci 654:282–291

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  • Calligaro DO, Eldefrawi ME (1987) Central and peripheral cocaine receptors. J Pharmacol Exp Ther 243:61–68

    PubMed  Google Scholar 

  • Calligaro DO, Elderfrawi ME (1988) High affinity stereospecific binding of [3H]cocaine in striatum and its relationship to the dopamine transporter. Membrane Biochem 7:87–106

    Google Scholar 

  • Church MW, Kaufmann RA, Keenan JA, Martier SS, Savoy-Moore RT, Ostrea EM Jr, Subramanian MG, Welch RA, Zajac CS (1991) Effects of prenatal cocaine exposure. In: Watson RR (ed) Biochemistry and physiology of substance abuse, vol 3. CRC, Boca Raton Ann Arbor Boston, pp 179–204

    Google Scholar 

  • Clow DW, Hammer RPJ, Kirstein CL, Spear LP (1991) Gestational cocaine exposure increases opiate receptor binding in weanling offspring. Dev Brain Res 59:179–185

    Article  Google Scholar 

  • Di Chiara G, Tanda GL, Frau R, Carboni E (1992) Heterologous monoamine reuptake: lack of transmitter specificity of neuronspecific carriers. Neurochem Int 20 [Suppl]:231S-235S

    PubMed  Google Scholar 

  • Dow-Edwards DL, Freed LA, Fico TA (1990) Structural and functional effects of prenatal cocaine exposure in adult rat brain. Dev Brain Res 57:263–268

    Article  Google Scholar 

  • Fiszman ML, Zuddas A, Masana MI, Barker JL, di Porzio U (1991) Dopamine synthesis precedes dopamine uptake in embryonic rat mesencephalic neurons. J Neurochem 56:392–399

    PubMed  Google Scholar 

  • Freeman TB, Spence MS, Boss BD, Spector DH, Strecker RE, Olanow CW, Kordower JH (1991) Development of dopaminergic neurons in the human substantia nigra. Exp Neurol 113:344–353

    Article  PubMed  Google Scholar 

  • Giros B, El Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–154

    Article  PubMed  Google Scholar 

  • Hanbauer I, Grilli M (1992) Molecular mechanisms involving transport and release of dopamine in primary cultures of mesencephalic neurons. Neurochem Int 20 [Suppl.]:101S-105S

    Article  PubMed  Google Scholar 

  • Harris JE, Baldessarini RJ (1973) Uptake of [3H]-catecholamines by homogenates of rat corpus striatum and cerebal cortex: effects of amphetamine analogues. Neuropharmacology 12:669–679

    Article  PubMed  Google Scholar 

  • Hoffman BJ, Mezey E, Brownstein MJ (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580

    PubMed  Google Scholar 

  • Hyde CE, Bennett BA (1992) Characterization of dopamine and serotonin transporters in an acute fetal rat striatal preparation. Soc Neurosci Abstr 18:365

    Google Scholar 

  • Javitch, JA, Blaustein RO, Snyder SH (1984) [3H]Mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Mol Pharmacol 26:35–44

    PubMed  Google Scholar 

  • Kaufman MJ, Madras BK (1991) Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson's-diseased striatum. Synapse 9:43–49

    Article  PubMed  Google Scholar 

  • Kirifides AL, Harvey JA, Aloyo VJ (1992) The low affinity binding site for the cocaine analog, WIN 35,428 is an artifact of freezing caudate tissue. Life Sci 50:PL-139–PL-142

    Article  Google Scholar 

  • Kirksey DF, Slotkin TA (1979) Concomitant development of [3H]-dopamine and [3H]-5-hydroxytryptamine uptake systems in rat brain regions. Br J Pharmacol 67:387–391

    PubMed  Google Scholar 

  • Koe BK (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199:649–661

    PubMed  Google Scholar 

  • Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. TINS 14:299–302

    PubMed  Google Scholar 

  • Lester BM, Corwin MJ, Sepkoski C, Seifer R, Peucker M, McLaughlin, S, Golub HL (1991) Neurobehavioral syndromes in cocaine-exposed newborn infants. Child Dev 62:694–705

    PubMed  Google Scholar 

  • Lew R, Grigoriadis D, Wilson A, Boja JW, Simantov R, Kuhar MJ (1991a) Dopamine transporter: deglycosylation with exo- and endoglycosidases. Brain Res 539:239–246

    Article  PubMed  Google Scholar 

  • Lew R, Vaughan R, Simantov R, Wilson A, Kuhar MJ (1991b) Dopamine transporters in the nucleus accumbens and the striatum have different apparent molecular weights. Synapse 8:152–153

    Article  PubMed  Google Scholar 

  • Madras BK, Fahey MA, Bergman, J, Canfield DR, Spealman RD (1989a) Effects of cocaine and related drugs in nonhuman primates. I. [3H]Cocaine binding sites in caudate-putamen. J Pharmacol Exp Ther 251:131–141

    PubMed  Google Scholar 

  • Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA (1989b) Cocaine receptors labeled by [3H]2β-carbomethoxy-3β-(4-fluorophenyl)tropane. Mol Pharmacol 36:518–524

    PubMed  Google Scholar 

  • Matera C, Warren WB, Moomjy M, Fink DJ, Fox HE (1990) Prevalence of use of cocaine and other substances in an obstetric population. Am J Obstet Gynecol 163:797–801

    PubMed  Google Scholar 

  • Meyer JS, Sharifi AA (1992) Stimulation of brain tyrosine hydroxylase activity by prenatal cocaine exposure. Teratology 45:528

    Google Scholar 

  • Mirochnick M, Meyer J, Cole J, Herren T, Zuckerman B (1991) Circulating catecholamine concentrations in cocaine-exposed neonates: a pilot study. Pediatrics 88:481–485

    PubMed  Google Scholar 

  • Morgan MA, Silavin SL, Randolph M, Payne GGJ, Sheldon RE, Fishburne, JIJ, Wentworth RA, Nathanielsz PW (1991) Effect of intravenous cocaine on uterine blood flow in the gravid baboon. Am J Obstet Gynecol 164:1021–1027

    PubMed  Google Scholar 

  • Neuspiel DR, Hamel SC (1991) Cocaine and infant behavior. Dev Behav Pediatr 12:55–64

    Google Scholar 

  • Olson L. Boréus LO, Seiger Å (1973) Histochemical demonstration and mapping of 5-hydroxytryptamine- and catecholamine-containing neuron systems in the human fetal brain. Z Anat Entwickl-Gesch 139:259–282

    Article  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    Article  PubMed  Google Scholar 

  • Pitts DK, Marwah J (1987) Neuropharmacology of cocaine: role of monoaminergic systems. Monogr Neural Sci 13:34–54

    PubMed  Google Scholar 

  • Reith MEA, Sershen H, Allen DL, Lajtha A (1983) A portion of [3H]cocaine binding in brain is associated with serotonergic neurons. Mol Pharmacol 23:600–606

    PubMed  Google Scholar 

  • Reith MEA, Meisler BE, Sershen H, Lajtha A (1984) [3H]cocaine binding in brain is inhibited by Tris(hydroxymethyl)aminomethane. J Neurosci Meth 12:151–154

    Article  Google Scholar 

  • Richelson E, Pfenning M (1984) Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine uptake. Eur J Pharmacol 104:277–286

    Article  PubMed  Google Scholar 

  • Ritz MC, Cone EJ (1990) Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci 46:635–645

    Article  PubMed  Google Scholar 

  • Rudnick G, Wall SC (1991) Binding of the cocaine analog 2β-[3H]carboxymethoxy-3β-(4-fluorophenyl)tropane to the serotonin transporter. Mol Pharmacol 40:421–426

    PubMed  Google Scholar 

  • Scalzo FM, Ali SF, Frambes NA, Spear LP (1990) Weanling rats exposed prenatally to cocaine exhibit an increase in striatal D2 dopamine binding associated with an increase in ligand affinity. Pharmacol Biochem Behav 37:371–373

    Article  PubMed  Google Scholar 

  • Scheffel U, Dannals RF, Cline EJ, Ricaurte GA, Carroll FI, Abraham P, Lewin AH, Kuhar MJ (1992) [123/125I]RTI-55, an in vivo label for the serotonin transporter. Synapse 11:134–139

    Article  PubMed  Google Scholar 

  • Schlumpf M, Shoemaker WJ, Bloom FE (1980) Innervation of embryonic rat cerebal cortex by catecholamine-containing fibers. J Comp Neurol 192:361–376

    Article  PubMed  Google Scholar 

  • Shearman LP, Maguire RL, Meyer JS (1992) Characterization of fetal rat brain cocaine receptors labeled with [3H]cocaine or the potent cocaine analog [125I]RTI-55. Soc Neurosci Abstr 18:1434

    Google Scholar 

  • Specht LA, Pickel VM, Joh TH, Reis DJ (1981) Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny. J Comp Neurol 199:233–253

    Article  PubMed  Google Scholar 

  • Streissguth AP, Grant TM, Barr HM, Brown ZA, Martin JC, Mayock, DE, Ramey SL, Moore L (1991) Cocaine and the use of alcohol and other drugs during pregnancy. Am J Obstet Gynecol 164:1239–1243

    PubMed  Google Scholar 

  • Usdin TB, Mezey E, Chen C, Brownstein MJ, Hoffman BJ (1991) Cloning of the cocaine-sensitive bovine dopamine transporter. Proc Natl Acad Sci, USA 88:1168–1171

    Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Broenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Article  PubMed  Google Scholar 

  • Ward SLD, Bautista DB, Buckley S, Schuetz S, Wachsman L, Warburton D (1989) Circulating catecholamines and adrenoreceptors in infants of cocaine-abusing mothers. Ann NY Acad Sci 562:349–351

    Google Scholar 

  • Wong DT, Bymaster FP (1976) Effect of nisoxetine on uptake of catecholamines in synaptosomes isolated from discrete regions of rat brain. Biochem Pharmacol 25:1979–1983

    Article  PubMed  Google Scholar 

  • Woods JRJ, Plessinger MA, Clark KE (1987) Effect of cocaine on uterine blood flow and fetal oxygenation. JAMA 257:957–961

    Article  PubMed  Google Scholar 

  • Yotsumoto I, Nomura Y (1981) Ontogenesis of the dopamine uptake into P2 fractions and slices of the rat brain. Jpn J Pharmacol 31:298–300

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Some of these data were published in preliminary form in: Meyer JS (1992) Prenatal neurochemistry of cocaine. Ann NY Acad Sci 654:487–488

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, J.S., Shearman, L.P., Collins, L.M. et al. Cocaine binding sites in fetal rat brain: implications for prenatal cocaine action. Psychopharmacology 112, 445–451 (1993). https://doi.org/10.1007/BF02244892

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02244892

Key words

Navigation