Skip to main content
Log in

Chemoconvulsant seizures: Advantages of focally-evoked seizure models

  • Animal Models Relevant to Human Epilepsies
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

Abstract

Studies of short and long-term changes in regional metabolism, blood flow, gene expression (including immediate early genes and genes for neurotrophic factors), sprouting and cell death following seizures are pivotal to an under-standing of the neural networks responsible for the generation of seizures. At the same time, this information forms a basis for understanding the pathophysiology associated with chronic, recurrent seizures. Systemic chemoconvulsant seizure models, produced by systemically administered chemoconvulsant agents, although convenient, are plagued with difficulties which confound the interpretation of their effects on the nervous system. These difficulties include widespread direct cellular and physiological effects of the chemoconvulsant drugs, most of which are independent of seizures. In addition, numerous physiological changes occur as a secondary consequence of, or ancillary to, seizures, and it can be especially difficult to separate these effects from the direct effects of the propagated seizure discharge itself. Some of these difficulties can be overcome by the use of focally-evoked seizure models. Such models avoid the diffuse presence of drug throughout the CNS and thereby eliminate most of the direct cellular and physiologic actions of the drug apart from seizure-induction. Large regions of the brain distant from the focal site of drug application then can be examined for molecular, structural and physiologic changes uncomplicated by the presence of drug. Moreover, different focal sites of drug application can be compared to evaluate the specificity of the molecular changes to the neural network engaged in the seizure discharge. For example, limbic seizures, evoked by chemoconvulsant application into area tempestas, can be compared with brainstem convulsions evoked by chemoconvulsant application into inferior colliculus. Studies using focal drug application have also been successful in producing distant damage following status epilepticus and in demonstrating “distant neuroprotection”. The importance of identifying seizure-specific pathophysiological alterations is discussed in the context of focal vs. systemic chemoconvulsant seizure models.

Sommario

Studi su modificazioni a breve e lungo termine del metabolismo regionale, del flusso, della espressione genica, dei fenomeni degenerativi e rigenerativi conseguenti alle crisi forniscono informazioni cruciali per la comprensione dei meccanismi neuronali responsabili della generazione delle crisi. Modelli sperimentali prodotti dalla somministrazione sistemica di agenti chimici convulsivanti, benché utili danno risultati di difficile interpretazione. Le difficoltà interpretative derivano dai molti effetti cellulari e fisiologici dei farmaci convulsivanti che sono indipendenti dalle crisi. Inoltre numerosi effetti fisiologici secondari o collaterali alle crisi sono difficilmente discriminabili da quelli direttamente dipendenti dalla scarica critica. Alcune di queste difficoltà possono essere superate dall'uso di modelli di crisi focali, nei quali l'effetto epilettogeno diretto delle sostanze impiegate non è contaminato dagli effetti generali. In questo modo le modificazioni molecolari, strutturali e fisiologiche che si verificano in regioni lontane dalla zona di applicazione del farmaco possono essere studiate senza l'interferenza dei suoi effetti diretti. Per di più in questi modelli lo studio comparativo delle diverse zone di applicazione dell'agente epilettogeno permette di valutare la specificità delle modificazioni molecolari in rapporto all'aggregato neuronale generatore della scarica critica. Ad esempio crisi limbiche evocate da applicazione di chemoconvulsivanti nell'area tempestas possono essere studiate comparativamente con convulsioni troncoencefaliche da somministrazione di chemoconvulsivanti nel collicolo inferiore. L'applicazione locale di farmaci si è dimostrata in grado di indurre danni a distanza conseguenti a stato epilettico e ha rivelato l'esistenza di neuroprotezione a distanza. L'importanza dell'identificazione di alterazioni epilettogene specifiche per tipo di crisi viene discussa nel contesto di modelli di crisi epilettiche indotte da somministrazione focale o generalizzata di chemoconvulsivanti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Ari Y.:Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience, 14:375–403, 1985.

    PubMed  Google Scholar 

  2. Cavalheiro E.A., Bortolotto Z.A., Turski L.:Microinjections of the γ-aminobutyrate antagonist, bicuculline methiodide, into the caudate-putamen prevent amygdala-kindled seizures in rats. Brain Res., 411:370–372, 1987.

    PubMed  Google Scholar 

  3. Collins G.G.S., Ansou J., Surtes L.:Presynaptic kainate and N-methyl-D-aspartate receptors regulate excitatory amino acid release in the olfactory cortex. Brain. Res., 265:157–159, 1983.

    PubMed  Google Scholar 

  4. Dean P., Gale K.:Anticonvulsant action of GABA receptor blockade in the nigrotectal target region. Brain Res., 477:391–395, 1989.

    PubMed  Google Scholar 

  5. Dragunow M., Robertson H.A.:Kindling stimulation induces c-fos protein(s) in granule cells of dentate gyrus. Nature, 328:441–442, 1987.

    Google Scholar 

  6. Ferkany J.W., Zaczek R., Coyle J.T.:Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors. Nature, 298:757–759, 1982.

    PubMed  Google Scholar 

  7. Fernicola D.J., Gale K.:Midbrain site of convulsant action of morphine. Soc. Neurosci., 12: Abs. #25.6, 1986.

  8. Follesa P., Gale K., Mocchetti I.:Regional and temporal expression of nerve growth factor and basic fibroblast growth factor in the rat brain following electroconvulsive shock. Exper. Neurol., 127:37–44, 1994.

    Google Scholar 

  9. Frye G.D., McCown T.J., Breese G.R., Peterson S.L.:GABAergic modulation of inferior colliculus excitability: role in ethanol withdrawal audiogenic seizures. J. Pharmacol. Exp. Ther., 237:478–485, 1986.

    PubMed  Google Scholar 

  10. Gale K.:Role of GABA in the genesis of chemoconvulsant seizures. Toxicology Letters 64/65, 417–428, 1992.

    Google Scholar 

  11. Gale K.:Focal trigger zones and pathways of propagation in seizure generation. In: Epilepsy: Models, Mechanisms and Concepts, (ed by P. Schwartzkroin) Cambridge Press, N.Y., pp. 48–93, 1993.

    Google Scholar 

  12. Gale K., Dubach M.:Localization of area tempestas in the piriform cortex of the monkey. Soc. Neuroscience Abst. 19, 16.8.1993.

  13. Gale K., Pazos A., Maggio R., Japikse K., Pritchard P.:Blockade of GABA receptors in superior colliculus protects against focally evoked limbic motor seizures. Brain. Res. 603:279–283, 1993.

    PubMed  Google Scholar 

  14. Gunne L.M., Bachus S.E., Gale K.:Oral movements induced by interference with nigral GABA neurotrasmission: relationship to tardive dyskinesias. Exper. Neurol., 100:459–469, 1988.

    Google Scholar 

  15. Halonen T., Tortorella A., Zrebeet H., Gale K.:Posterior piriform and perirhinal cortex relay seizures evoked from the area tempestas-role of excitatory and inhibitory amino acid receptors. Brain Res., 652:145–148, 1994.

    PubMed  Google Scholar 

  16. Kelly M.E., McIntyre D.C.:Hippocampal kindling protects several structures from neuronal damage resulting from kainic acid-induced status epilepticus. Brain Res., 634:245–256, 1994.

    PubMed  Google Scholar 

  17. Lee P.H., Obie J., Hong J.S.:Intrahippocampal injections of a specific mu-receptor ligand PL017 produce generalized convulsions in rats. Brain Res., 441:381–385, 1988.

    PubMed  Google Scholar 

  18. Le Gal La Salle G.:Long-lasting and sequential increase of c-fos oncoprotein expression in kainic acid-induced status epilepticus. Neurosci. Lett., 88:127–130, 1988.

    PubMed  Google Scholar 

  19. Lothman E.W., Collins R.C.:Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res., 218:299–318, 1981.

    PubMed  Google Scholar 

  20. Maggio R., Lanaud P.,Grayson D.R., Gale K.:Expression of c-fos mRNA following seizures evoked from an epileptogenic site in the deep prepyriform cortex: regional distribution in brain as shown by in situhibridization. Exper. Neurol., 119:11–12, 1993.

    Google Scholar 

  21. Maggio R., Liminga U., Gale K.:Selective stimulation of kainate but not quisqualate or NMDA receptors in substantia nigra evokes limbic motor seizures. Brain Res., 528:223–230, 1990.

    PubMed  Google Scholar 

  22. Massotti M., Gale K.:Electroencephalographic evidence for dose-related biphasic effect of morphine on bicuculline-induced seizures in the rat. Epilepsy Res., 4:81–89, 1989.

    PubMed  Google Scholar 

  23. McCown T.J., Greenwood, R.S., Frye G., Breese G.R.:Electrically-elicited seizures from the inferior colliculus: a potential site for the genesis of epilepsy? Exper. Neurol., 86:527–542, 1984.

    Google Scholar 

  24. McNamara J.O.:Kindling model of epilepsy. Advances in Neurology, 44:857–877, 1986.

    PubMed  Google Scholar 

  25. Millan M.H., Meldrum B.S., Faingold C.L.:Induction of audiogenic seizure susceptibility by focal infusion of excitant amino acid or bicuculline into che inferior colliculus of normal rats. Exper. Neurol. 91:634–639, 1986.

    Google Scholar 

  26. Millan M., Patel S., Mello L., Meldrum B.:Focal injection of 2-amino-7-phosphoheptanoic acid into prepiriform cortex protects against pilocarpine-induced limbic seizures in rats. Neurosci. Lett., 70:69–74, 1986.

    PubMed  Google Scholar 

  27. Mizuno A., Mizobuchi T., Ishibashi Y., Matsuda M.:c-fos mRNA induction under vitamin B 6 antagonist-induced seizure. Neurosci. Lett., 98:272–275, 1989.

    PubMed  Google Scholar 

  28. Morimoto K., Dragunow M., Goddard G.:Deep prepyriform cortex kindling and its relation to amygdala kindling in the rat. Exp. Neurol., 94:637–648, 1986.

    PubMed  Google Scholar 

  29. Olianas M.C., De Montis G.M., Mulas G., Tagliamonte A.:The striatal dopaminergic function is mediated by the inhibition of a nigral non-dopaminergic neuronal system via a striatonigral gabaergic pathway. Eur. J. Pharmacol., 49:233–241, 1978.

    PubMed  Google Scholar 

  30. Olney J.W., Collins R.C., Sloviter R.S.:Excitotoxic mechanisms of epileptic brain damage. Adv. Neurol., 44:857–877, 1986.

    PubMed  Google Scholar 

  31. Piredda S., Gale K.:A crucial epileptogenic site in the deep prepiriform cortex. Nature, 317:623–625, 1985.

    PubMed  Google Scholar 

  32. Piredda S., Gale K.:Anticonvulsant action of 2-amino-7-phosphonoheptanoic acid and muscimol in the deep prepiriform cortex. Eur. J. Pharmacol., 120:115–118, 1986.

    PubMed  Google Scholar 

  33. Piredda S., Gale K.:Role of excitatory amino acid transmission in the genesis of seizures elicited from the deep prepiriform cortex. Brain Res. 377:205–210, 1986.

    PubMed  Google Scholar 

  34. Proctor M., Gale K.:The role of the hippocampus in the propagation of limbic seizures. Epilepsia 35; Suppl. 8:58, 1994.

    Google Scholar 

  35. Racine R.:Modification of seizure activity by electrical stimulation. II. Motor seizures. Electroencephalogr. Clin. Neurophysiol., 32:281–294. 1972.

    PubMed  Google Scholar 

  36. Riva M.A., Gale K., Mocchetti I.:Basic fibroblast growth factor mRNA increases in specific brain regions following convulsive seizures. Molecular Brain Res. 15:311–318, 1992.

    Google Scholar 

  37. Riva M.A., Donati E., Tascedda F., Zolli M., Racagni G.:Short- and long-term induction of basic fibroblast growth factor gene expression in the rat central nervous system following kainate injection. Neurosci., 59:55–65, 1994.

    Google Scholar 

  38. Shimosaka S., So Y.T., Simon R.P.:Deep prepiriform cortex modulates kainate-induced hippocampal injury. Neurosci., 61:817–822, 1994.

    Google Scholar 

  39. Shimosaka S., So Y.T., Simon R.P.:Distribution of HSP72 induction and neuronal death following limbic seizures. Neurosci. Lett., 138:202–206, 1992.

    PubMed  Google Scholar 

  40. Thai L., He X.P., Zhang W.Q., Hong J.S.:Synergistic effects of co-injection of mu and glutamate receptor agonists into the ventral hippocampus in producing seizure activity. Society for Neuroscience Abstracts, 16:22, 1990.

    Google Scholar 

  41. Tortorella A., Fornai F., Cassidy R., Gale K.:Role of muscarinic and non-NMDA receptors in area tempestas for focally-evoked status epilepticus. Soc. for Neurosci. 19: Abst. 599.15, 1993.

    Google Scholar 

  42. Turski W.A., Cavalheiro E.A., Calderazzo-Filho, L.S., Kleinrok Z., Czuczwar S.J., Turski L.:Injections of picrotoxin and bicuculline into the amygdaloid complex on the rat: an elctroencephalographic, behavioral and morphological analysis. Neuroscience, 14:37–53, 1985.

    PubMed  Google Scholar 

  43. Turski W.A., Cavalheiro E.A., Schwartz M., Czuczwar S.J., Kleinrok, Z., Turski L.:Limbic seizures produced by pilocarpine in rats: behavioral, electroencephalographic and neuropathological study. Behav. Brain Res., 9:315–336, 1983.

    PubMed  Google Scholar 

  44. Uemura S., Kimura H.:Amygdaloid kindling with bicuculline methiodide in rats. Exp. Neurol., 102:346–353, 1988.

    PubMed  Google Scholar 

  45. Wahnschaffe U., Löscher W.:Lesions of the deep prepiriform cortex (“area tempestas”) in rats do not affect the convulsant action of systemically administered bicuculline. Neurosci. Lett. 108:161–166, 190.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gale, K. Chemoconvulsant seizures: Advantages of focally-evoked seizure models. Ital J Neuro Sci 16, 17–25 (1995). https://doi.org/10.1007/BF02229070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02229070

Key Words

Navigation