Skip to main content
Log in

Sequence analysis of a polymorphic Mhc class II gene in Pacific salmon

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Polymorphism of the nucleotide sequences encoding 149 amino acids of linked major histocompatibility complex (Mhc) class II 131 and 132 peptides, and of the intervening intron (548–773 base pairs), was examined within and among seven Pacific salmon (Oncorhynchus) species. Levels of nucleotide diversity were higher for theB1 sequence than forB2 or the intron in comparisons both within and between species. For the codons of the peptide binding region of the BI sequence, the level of nonsynonymous nucleotide substitution (dN) exceeded the level of synonymous substitution (dS) by a factor of ten for within-species comparisons, and by a factor of four for between-species comparisons. The excess of dN indicates that balancing selection maintains diversity at this salmonidMhc class II locus, as is common forMhc loci in other vertebrates. Levels of nucleotide diversity for both the exon and intron sequences were greater among than within species, and there were numerous species-specific nucleotides present in both the coding and noncoding regions. Thus, neighbor-joining analysis of both the intron and exon regions provided phylogenies in which the sequences clustered strongly by species. There was little evidence of shared ancestral (trans-species) polymorphism in the exon phylogeny, and the intron phylogeny depicted standard relationships among the Pacific salmon species. The lack of shared allelicB1 lineages in these closely related species may result from severe bottlenecks that occurred during speciation or during the ice ages that glaciated the rim of the north Pacific Ocean approximately every 100 000 years in the Pleistocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F. W. and Thorgaard, G. H. Tetraploidy and the evolution of salmonid fishes. In B. J. Turner (ed.):Evolutionary Genetics of Fishes, pp. 1–53, Plenum Press, New York, 1984

    Google Scholar 

  • Amemiya, C. T. and Litman, G. W. Early evolution of immunoglobulin genes.Amer Zool 31: 558–569, 1991

    Google Scholar 

  • Bourlet, Y., Behar, B., Guillemot, F., Frechin, N., Billault, A., Chausse, A. M., Zoorob, R., and Auffray, C. Isolation of chicken major histocompatibility complex class II (B-L) β chain and expression in lymphoid organs.EMBO J 7: 1031–1039, 1988

    PubMed  Google Scholar 

  • Broecker, W. S. and Denton, G. H. What drives glacial cycles?Science 262: 48–56, 1990

    Google Scholar 

  • Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. Three-dimensional structure of the human class II histocompatibility antigenHLA-DR1.Nature 364: 33–39, 1993

    PubMed  Google Scholar 

  • Devlin, R. H. Sequence of sockeye salmon type 1 and 2 growth hormone genes and the relationship of rainbow trout with Atlantic and Pacific salmon.Can J Fish Aquat Sci 50: 1738–1748, 1993

    Google Scholar 

  • Del Pozza, G., Ombra, M. N., Perfetto, C., Barbaro, A. D. L., Autiero, M., Maffei, A., and Guardiola, J.Alu repeats and evolution of theHLA-DQA1 locus. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp 231–242, Springer, Berlin Heidelberg, 1991

    Google Scholar 

  • Efron, B. The jackknife, the bootstrap, and other resampling plans. CBMS-NSF regional Conference Series in Applied Mathematics, Monograph 38, SIAM Philadelphia, 1982

  • Felsenstein, J. Confidence limits of phylogenies: an approach using the bootstrap.Evolution 39: 783–791, 1985

    Google Scholar 

  • Figueroa, F., Tichy, H., Berry, R. J., and Klein, J. MHC polymorphism in island populations of mice.Curr Top Microbiol Immunol 127: 100–105, 1986

    PubMed  Google Scholar 

  • Flajnik, M. F., Canel, C., Kramer, J., and Kasahara, M. Evolution of the major histocompatibility complex: molecular cloning of the major histocompatibility complex class I from the amphibian Xenopus.Proc Natl Acad Sci 88: 537–541, 1991

    PubMed  Google Scholar 

  • Gibbs, H. L., Weatherhead, P. J., Boag, P. T., White, B. N., Tabak, L. M., and Hoysak, D. J. Realized reproductive success of polygynous red-winged blackbirds revealed by DNA markers.Science 250: 1394–1397, 1990

    Google Scholar 

  • Grimholt, U., Olsaker, I., Lindstrom, C., and Lie, O. A study of variability in the MHC class II β1 and class I α2 domain exons of Atlantic salmon (Salmo salar).Anim Genet 25: 1–7, 1994

    Google Scholar 

  • Hashimoto, K., Nakanishi, T., and Kurosawa, Y. Isolation of carp genes encoding major histocompatibility complex antigens.Proc Natl Acad Sci 87: 6863–6867, 1990

    PubMed  Google Scholar 

  • Hordvik, I., Grimholt, U., Fosse, V. M., Lie, O., and Endresen, C. Cloning and sequence analysis of cDNAs encoding the MHC class II β chain in Atlantik salmon (Salmo salar).Immunogenetics 37: 437–441, 1993

    PubMed  Google Scholar 

  • Hughes, A. L. MHC polymorphism and the design of captive breeding programs.Conserv Biol 5: 29–251, 1991

    Google Scholar 

  • Jukes, T. H. and Cantor, C. R. Evolution of protein molecules. In H. N. Munro (ed.):Mammalian Protein Metabolism III, pp. 21–32, Academic Press, New York, 1969

    Google Scholar 

  • Juul-Madsen, H. R., Glamann, J., Madsen, H. O., and Simonsen, M. MHC class 11 beta-chain expression in the rainbow trout.Scand J Immunol 35: 687–694, 1992

    PubMed  Google Scholar 

  • Kido, Y., Aono, M., Yamaki, T., Matsumoto, K.-I., Murata, S., Saneyoshi, M., and Okada, N. Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution.Proc Natl Acad Sci 88: 2326–2330, 1991

    PubMed  Google Scholar 

  • Klein, J.Natural History of the Major Histocompatibility Complex, John Wiley, New York, 1986

    Google Scholar 

  • Klein, J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis.Hum Immunol 19: 155–162, 1987

    PubMed  Google Scholar 

  • Klein, J. The major histocompatibility complex of the mouse.Science 203: 516–521, 1979

    PubMed  Google Scholar 

  • Klein, D., Ono, H., O'hUigin, C., Vincek, V., Goldschmidt, T., and Klein, J. Extensive MHC variability in cichlid fishes of Lake Malawi.Nature 364: 330–334, 1993

    PubMed  Google Scholar 

  • Koishi, R. and Okada, N. Distribution of the salmonidHpa 1 family in the salmonid species demonstrated by in vitro runoff transcription assay of total genomic DNA: a procedure to estimate repetitive frequency and sequence divergence of a certain repetitive family with a few known sequences.J Mol Evol 32: 43–52, 1991

    PubMed  Google Scholar 

  • Kumar, S., Tamura, K., and Nei, M. MEGA: Molecular Evolutionary Genetics Analysis, ver 1.01. The Pennsylvania State University, University Park, 1993

    Google Scholar 

  • McGuire, K. L., Duncan, W. R., and Tucker, P. W. Syrian hamster DNA shows limited polymorphism at class L-like loci.Immunogenetics 22: 257–268, 1985

    PubMed  Google Scholar 

  • McPhail, J. D. and Lindsey, C. C. Freshwater fishes of northwestern Canada and Alaska.Can J Fish Aquatic Sci Bull 173: 1–381, 1970

    Google Scholar 

  • Miller, K. M., Withler, R. E., and Beacham, T. D. Stock identification of coho salmon (Oncorhynchus kisutch) using minisatellite DNA variation.Can J Fish Aquat Sci, in press

  • Nei, M. and Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions.Mol Biol Evol 3: 418–426, 1986

    PubMed  Google Scholar 

  • Nei, M. and Hughes, A. L. Polymorphism and evolution of the major histocompatibility complex loci in mammals. In R. K. Selander, A. G. Clark, and T. S. Whittam (eds.):Evolution at the Molecular Level, pp. 222–247, Sinauer Associates Inc, Sunderland, 1991

    Google Scholar 

  • Nei, M. and Rzhetsky, A. Reconstruction of phylogenetic trees and evolution of major histocompatibility complex genes. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp. 14–27, Springer, Berlin, Heidelberg, 1991

    Google Scholar 

  • O'Brien, S. J., Roelke, M. E., Marker, L., Newmen, A., Winkler, C. A., Meltzer, D., Colly, L., Evermann, J. F., Bush, M., and Wildt, D. E. Genetic basis for species vulnerability in the cheetah.Science 227, 1428–1434, 1985

    PubMed  Google Scholar 

  • Ohno, S.Evolution by Gene Duplication, Springer, New York, 1970

    Google Scholar 

  • Okada, N. SINEs.Current Opinion in Genetics and Development 1: 498–504, 1991

    PubMed  Google Scholar 

  • Okamura, K., Nakanishi, T., Kurosawa, Y., and Hashimoto, K. Expansion of genes that encode MHC class I molecules in cyprinid fishes.J Immun 151: 188–200, 1993

    PubMed  Google Scholar 

  • Okazaki, T. Genetic variation and population structure in mason salmonOncorhynchus masou of Japan.Bull Japan Soc Sci Fish 52: 1365–1376, 1986

    Google Scholar 

  • Ono, H., Klein, D., Vincek, V., Figueroa, F., O'hUigin, H., and Klein, J.Mhc class II genes of zebrafish.Proc Natl Acad Sci 89: 11886–11890, 1992

    PubMed  Google Scholar 

  • Ono, H., O'hUigin, C., Tichy, H., and Klein, J. Major histocompatibility complex variation in two species of cichlid fishes from Lake Malawi.Mol Biol Evol 10: 1060–1072, 1993

    PubMed  Google Scholar 

  • Plante, Y., Boage, P. T., White, B. N., and Boonstra, R. Highly polymorphic genetic markers in meadow voles (Microtus pennsyl-vanicus) revealed by a murine major histocompatibility complex (MHC) probe.Can J Zool 69: 213–220, 1991

    Google Scholar 

  • Rzhetsky, A. and Nei, M. A simple method for estimating and testing minimum-evolution trees.Mol Biol Evol 9: 945–967, 1992

    Google Scholar 

  • Rzhetsky, A. and Nei, M. Theoretical foundation of the minimum-evolution method of phylogenetic inference.J Mol Evol 38: 295–299, 1993

    Google Scholar 

  • Saitou, N. and Nei, M. The neighbor-joining method: a new method for reconstructing phyologenetic trees.Mol Biol Evol 4: 406, 1987

    PubMed  Google Scholar 

  • Satta, Y. How the ratio of nonsynonymous to synonymous pseudogene substitutions can be less than one.Immunogenetics 38: 450–454, 1993

    PubMed  Google Scholar 

  • Schonbach, C. and Klein, J. The Alu repeats of the primate DRB genes. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp 243–255, Springer, Berlin Heidelberg, 1991

    Google Scholar 

  • She, J. X. and Wakeland, E. K. Molecular and genetic mechanisms involved in the generation of Mhc diversity. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp. 139–154, Springer, Berlin Heidelberg, 1991

    Google Scholar 

  • Slade, R. W. Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology.Proc R Soc Lond B 249: 163–171, 1992

    Google Scholar 

  • Takasaki, N., Murata, S., Saitoh, M., Kobayashi, T., Park, L., and Okada, N. Species-specific amplification of tRNA-derived short interspersed repetitive elements (SINEs) by retroposition: a process of parasitization of entire genomes during the evolution of salmonids.Proc Natl Acad Sci 91: 10153–10157, 1994

    PubMed  Google Scholar 

  • Thomas, W. K. and Beckenbach, A. T. Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution.J Mol Biol 29: 233–245, 1989

    Google Scholar 

  • Thomas, W. K., Withler, R. E., and Beckenbach, A. T. Mitochondrial DNA analysis of Pacific salmonid evolution.Can J Zool 64: 1058–1064, 1986

    Google Scholar 

  • Trowsdale, J., Groves, V., and Arnason, A. Limited MHC polymorphism in whales.Immunogenetics 29: 19–24, 1989

    PubMed  Google Scholar 

  • Trowsdale, J. “Both man & bird & beast”: comparative organization of MHC genes.Immunogenetics 41: 1–17, 1995

    PubMed  Google Scholar 

  • Utter, F. M., Allendorf, F. W., and Hodgins, H. O. Genetic variability and relationships in Pacific salmon and related trout based on protein variations.Syst Zool 22: 257–270, 1973

    Google Scholar 

  • Ye, Y., She, J., and Wakeland, E. K. Diversification of class II Au within the genusMus. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp. 131–138, Springer, Berlin Heidelberg, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers U34692-U34720

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, K.M., Withler, R.E. Sequence analysis of a polymorphic Mhc class II gene in Pacific salmon. Immunogenetics 43, 337–351 (1996). https://doi.org/10.1007/BF02199802

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02199802

Keywords

Navigation