Skip to main content
Log in

Torsion angle approach to nucleic acid distance geometry: TANDY

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

An efficient algorithm for generating DNA structures from a given set of distance constraints has been developed. The present implementation is suited for single-stranded DNA. The performance of the program has been tested with constraint sets representative of most stringent theoretical cases and also with usually available experimental ones. The results indicate that use of NOE-derived constraints alone generates an extremely large family of conformers and suggest that the quality of structure determination may be enhanced by incorporating additional constraints obtained by other means. The speed of the program makes it ideal for interactive use in conjunction with other complementary algorithms such as those for spectral simulation, energy minimization and molecular dynamics calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, H., Braun, W., Noguti, T. and Go, N. (1984)Comput. Chem.,8, 239–247.

    Google Scholar 

  • Altona, C. and Sundaralingam, M. (1972)J. Am. Chem. Soc.,94, 8205–8212.

    Google Scholar 

  • Arnott, S., Smith, P.J.C. and Chandrasekaran, R. (1976) InCRC Handbook of Biochemistry and Molecular Biology, 2nd ed., (Ed. Fasman, G.D.) CRC Press, Cleveland, OH, pp. 411–421.

    Google Scholar 

  • Borgias, B.A., Gochin, M., Kerwood, D.J. and James, T.L. (1990) Prog. NMR Spectr.,27, 83–100.

    Google Scholar 

  • Braun, W. (1987)Q. Rev. Biophys.,19, 115–157.

    Google Scholar 

  • Braun, W. and Go, N. (1985)J. Mol. Biol.,186, 611–626.

    Google Scholar 

  • Chary, K.V.R., Modi, S., Hosur, R.V., Govil, G., Chen, C-q. and Miles, H.T. (1989)Biochemistry,28, 5240–5249.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1989)Crit. Rev. Biochem. Mol. Biol.,24, 479–564.

    Google Scholar 

  • Crippen, G.M. (1977)J. Comp. Phys.,26, 449–452.

    Google Scholar 

  • Fletcher, R. (1987)Practical Methods of Optimization, 2nd ed., John Wiley and Sons, New York, p. 55.

    Google Scholar 

  • Güntert, P., Braun, W. and Wüthrich, K. (1991)J. Mol. Biol.,217, 517–530.

    Google Scholar 

  • Hadwiger, M.A. and Fox, G.E. (1991)J. Biomol. Struct. Dyn.,8, 759–779.

    Google Scholar 

  • Hare, D.R., Shapiro, L. and Patel, D.J. (1988a)Biochemistry,25, 7445–7456.

    Google Scholar 

  • Hare, D.R., Shapiro, L. and Patel, D.J. (1988b)Biochemistry,25, 7456–7464.

    Google Scholar 

  • Havel, T.F. and Wüthrich, K. (1984)Bull. Math. Biol.,46, 673–698.

    Google Scholar 

  • Havel, T.F. and Wüthrich, K. (1985)J. Mot. Biol.,182, 281–294.

    Google Scholar 

  • Havel, T.F., Kuntz, I.D. and Crippen, G.M. (1983)Bull. Math. Biol.,45, 665–720.

    Google Scholar 

  • Hoare, C.A.R. (1971)Comput. J.,14, 391–395.

    Google Scholar 

  • Hosur, R.V., Govil, G. and Miles, H.T. (1988)Magn. Res. Chem.,26, 927–944.

    Google Scholar 

  • Hosur, R.V., Majumdar, A. and Patel, D.J. (1989)J. Am. Chem. Soc.,111, 5482–5483.

    Google Scholar 

  • IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983)Eur. J. Biochem.,131, 9–15.

    Google Scholar 

  • Kouchakdjian, M., Bodepudi, V., Shibutani, S., Eisenberg, M., Johnson, F., Grollman, A.P. and Patel, D.J. (1991)Biochemistry,30, 1403–1412.

    Google Scholar 

  • Lane, A.N., Jenkins, T.C., Brown, T. and Neidle, S. (1991)Biochemistry,30, 1372–1385.

    Google Scholar 

  • Nerdal, W., Hare, D.R. and Reid, B.R. (1989)Biochemistry,28, 10008–10021.

    Google Scholar 

  • Pardi, A., Hare, D.R. and Wang, C. (1988)Proc. Natl. Acad. Sci. USA,85, 8785–8789.

    Google Scholar 

  • Patel, D.J., Shapiro, L. and Hare, D.R. (1987)Q. Rev. Biophys.,20, 35–112.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1989)Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, p. 307.

    Google Scholar 

  • Sklenar, V. and Bax, A. (1987)J. Am. Chem. Soc.,109, 7525–7526.

    Google Scholar 

  • Wainwright, R.L. (1985)Commun. ACM,28, 396–403.

    Google Scholar 

  • Wirth, N. (1976)Algorithms + Data Structures = Programs, Prentice-Hall, Englewood Cliffs, NJ, p. 65.

    Google Scholar 

  • Wüthrich, K. (1989)Science,243, 45–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor V.F. Bystrov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R.A., Hosur, R.V. & Govil, G. Torsion angle approach to nucleic acid distance geometry: TANDY. J Biomol NMR 1, 363–378 (1991). https://doi.org/10.1007/BF02192860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02192860

Keywords

Navigation