Skip to main content
Log in

Scaling behavior of permeability and conductivity anisotropy near the percolation threshold

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use the finite-size scaling method to estimate the critical exponent λ that characterizes the scaling behavior of conductivity and permeability anisotropy near the percolation thresholdp c . Here λ is defined by the scaling lawk l /k t −1∼(p−p c )λ, wherek t andk t are the conductivity or permeability of the system in the direction of the macroscopic potential gradient and perpendicular to this direction, respectively. The results are λ(d=2)≃0.819±0.011 and λ(d=3)≃0.518±0.001. We interpret these results in terms of the structure of percolation clusters and their chemical distance. We also compare our results with the predictions of a scaling theory for λ due to Straley, and propose that λ(d=2)=t B , wheret is the critical exponent of the conductivity or permeability of the system, and β B is the critical exponent of the backbone of percolation clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd ed., (Taylor and Francis, London, 1992).

    Google Scholar 

  2. M. Sahimi,Applications of Percolation Theory (Taylor and Francis, London, 1994).

    Google Scholar 

  3. M. Sahimi,Rev. Mod. Phys. 65:1393 (1993).

    Google Scholar 

  4. D. Stauffer, A. Coninglio, and M. Adam,Adv. Polymer Sci. 44:105 (1982).

    Google Scholar 

  5. M. Daoud and A. Lapp,J. Phys.: Condens. Matter 2:4021 (1990).

    Google Scholar 

  6. M. Sahimi,Mod. Phys. Lett. B 6:507 (1992).

    Google Scholar 

  7. M. Adam and D. Lairez,Fractals,1:149 (1993).

    Google Scholar 

  8. M. Sahimi,Physica A 186:160 (1992).

    Google Scholar 

  9. S. Kirkpatrick,Rev. Mod. Phys.,45:574 (1973).

    Google Scholar 

  10. J.-M. Normand, H. J. Herrmann, and M. Hajjar,J. Stat. Phys. 52:441 (1988).

    Google Scholar 

  11. D. B. Gingold and C. J. Lobb,Phys. Rev. B 42:8220 (1990).

    Google Scholar 

  12. T. P. Troadec, D. Bideau, and E. Guyon,J. Phys. C 14:4807 (1981).

    Google Scholar 

  13. K. S. Mendelson and F. G. Karioris,J. Phys. C 13:6197 (1980).

    Google Scholar 

  14. L. N. Smith and C. J. Lobb,Phys. Rev. B 20:3653 (1979).

    Google Scholar 

  15. I. Balberg and P. J. Zanzucchi,Appl. Phys. Lett. 40:1022 (1982).

    Google Scholar 

  16. M. A. J. Michels, J. C. M. Brokken-Zip, W. M. Groenewoud, and A. Knoester,Physica A 157:529 (1989).

    Google Scholar 

  17. J. P. Straley,J. Phys. C 13:L773 (1980).

    Google Scholar 

  18. B. I. Shklovskii,Phys. Stat. Sol. (b) 85:K111 (1978).

    Google Scholar 

  19. C. J. Lobb, D. J. Frank, and M. Tinkham,Phys. Rev. B 23:2262 (1981).

    Google Scholar 

  20. A. K. Sarychev and A. P. Vinogradoff,J. Phys. C 16:L1073 (1983).

    Google Scholar 

  21. J. Vannimenus and M. Knezevic,J. Phys. C 17:4927 (1984).

    Google Scholar 

  22. S. Mukhopadhyay and M. Sahimi,Water Resour. Res., to be published.

  23. M. Sahimi and S. Mukhopadhyay,AIChE J., to be published.

  24. M. Sahimi and S. Arbabi,J. Stat. Phys. 62:453 (1991).

    Google Scholar 

  25. E. Duering and H. E. Roman,J. Stat. Phys. 64:851 (1991).

    Google Scholar 

  26. H. E. Stanley,J. Phys. A 10:L211 (1977).

    Google Scholar 

  27. K. M. Middlemiss, S. G. Whittington, and D. S. Gaunt,J. Phys. A 13:1835 (1980).

    Google Scholar 

  28. Z. Alexandrowicz,Phys. Lett. A 80:284 (1980).

    Google Scholar 

  29. S. Havlin and R. Nossal,J. Phys. A 17:L427 (1984).

    Google Scholar 

  30. H. J. Herrmann and H. E. Stanley,J. Phys. A 21:L829 (1988).

    Google Scholar 

  31. M. Sahimi,J. Phys. A 17:L601 (1984).

    Google Scholar 

  32. A. Aharony and D. Stauffer,Phys. Rev. Lett.,52:2368 (1984).

    Google Scholar 

  33. M. D. Rintoul and H. Nakanishi,J. Phys. A 25:L945 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Stauffer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, S., Sahimi, M. Scaling behavior of permeability and conductivity anisotropy near the percolation threshold. J Stat Phys 74, 1301–1308 (1994). https://doi.org/10.1007/BF02188233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188233

Key Words

Navigation