Skip to main content
Log in

Phycobiliproteins — a family of valuable, widely used fluorophores

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Phycobiliproteins are brilliantly colored, highly fluorescent components of the photosynthetic light-harvesting antenna complexes of cyanobacteria (blue-green algae), red algae and cryptomonads. These proteins carry covalently attached linear tetrapyrrole pigments related structurally to biliverdin. Phycobiliproteins, purified from certain organisms, are isolated as either trimers, (αβ)3, of approximatelyM r 110–120×103 (e.g., allophycocyanins), or hexamers, (αβ)6γ, of aboutM r 250×103 (certain phycoerythrins). Three phycobiliproteins R-phycoerythrin, B-phycoerythrin, and allophycocyanin serve as valuable fluorescent tags with numerous applications in flow cytometry, fluorescence activated cell sorting, histochemistry and, to a limited degree, in immunoassay and detection of reactive oxygen species. These applications exploit the unique physical and spectroscopic properties of phycobiliproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beale SI, Cornejo J (1991) Biosynthesis of phycobilins: 15,16-dihydrobiliverdin IXα is a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J. biol. Chem. 266: 22341–22345.

    Google Scholar 

  • Clayton RK (1970) Light and Living Matter. Vol. 1. The Physical Part. McGraw-Hill Inc., New York, 148 pp.

  • Cohen-Bazire G, Béguin S, Rimon S, Glazer AN, Brown DM (1977) Physico-Chemical and immunological properties of allophycocyanins. Arch. Microbiol. 111: 225–238.

    Google Scholar 

  • DeLange RJ, Glazer AN (1989) Phycoerythrin fluorescence-based assay for peroxy radicals: a screen for biologically relevant protective agents. Anal. Biochem. 177: 300–306.

    Google Scholar 

  • Duerring M, Huber R, Bode W Ruembeli R. Zuber H (1990) Refined three-dimensional structure of phycoerythrocyanin from the cyanobacteriumMastigocladus laminosus at 2.7 Å. J. mol. Biol. 211: 633–644.

    Google Scholar 

  • Duerring M, Schmidt GB, Huber R (1991) Isolation, crystallization, crystal-structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacteriumFremyella diplosiphon at 1.66Å resolution. J. mol. Biol. 217: 577–592.

    Google Scholar 

  • Fairchild CD (1993) Enzymatic and non-enzymatic addition of bilins to apophycobiliproteins. Ph.D. thesis, University of California, Berkeley.

  • Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA, Glazer AN (1992) Phycpcyanin α-subunit phycocyanobilin lyase. Proc. natl. Acad. Sci. USA 89: 7017–7021.

    Google Scholar 

  • Ficner R, Lobeck K, Schmidt G, Huber R (1992) Isolation, crystallization, crystal-structure analysis and refinement of B-phycoerythrin from the red algaPorphyridium sordidum at 2.2 Å resolution. J. mol. Biol. 228: 935–950.

    Google Scholar 

  • Fuchs HJ, McDowell J, Shellito JE (1988) Use of allophycocyanin allows quantitative description by flow cytometry of alveolar macrophage surface antigens present in low numbers of cells. Am. Rev. respiratory Dis. 138: 1124–1128.

    Google Scholar 

  • Gantt E (1980) Structure and function of phycobilisomes: light-harvesting pigment complexes in red and blue-green algae. Int. Rev. Cytol. 56: 45–80.

    Google Scholar 

  • Glazer AN (1981) Photosynthetic accessory proteins with bilin prosthetic groups. In Hatch MD, Boardman NK (eds), The Biochemistry of Plants. Vol. 8, Photosynthesis. Academic Press, New York: 51–96.

  • Glazer AN (1986) Phycobilisomes: relationship of structure to energy flow dynamics. In Youvan DC, Daldal F (eds), Microbial energy Transduction. Genetics, Structure, and Function of Membrane Proteins. Cold Spring Harbor Laboratory, New York: 31–36.

    Google Scholar 

  • Glazer AN (1988) Fluorescence-based assay for reactive oxygen species: a protective role for creatinine. FASEB J. 2: 2487–2491.

    Google Scholar 

  • Glazer AN (1990) Fluorescence-based assay for reactive oxygen species. In Packer L, Glazer AN (eds), Oxygen Radicals in Biological Systems. Part B. Oxygen Radicals and Antioxidants. Methods in Enzymology, Vol. 186. Academic Press, New York: 161–168.

  • Glazer AN, Hixson CS (1977) Subunit structure and chromophore composition of rhodophytan phycoerythrins.Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J. biol. Chem. 252: 32–42.

    Google Scholar 

  • Glazer AN, Stryer L (1983) Fluorescent tandem phycobiliprotein conjugates. Ernission wavelength shifting by energy transfer. Biophys. J. 43: 383–386.

    Google Scholar 

  • Glazer AN, Stryer L (1984) Phycofluor probes. Trends Biochem. Sci. 9: 423–427.

    Google Scholar 

  • Glazer AN, Stryer L (1990) Phycobiliprotein-avidin and phycobiliprotein-biotin conjugates. In Wilchek M, Bayer EA (eds), Avidin-Biotin Technology. Methods in Enzymology, Vol. 184. Academic Press, San Diego: 188–194.

  • Glazer AN, West JA, Chan C (1982) Phycoerythrins as chemotaxonomic markers in red algae: a survey. Biochem. Syst. Ecol. 10: 203–215.

    Google Scholar 

  • Good MJ, Hage WJ, Mummery CL, de Laat SW, Boonstra J (1992) Localization and quantification of epidermal growth factor receptors on single cells by confocal laser scanning microscopy. J. Histochem. Cytochem. 40: 1353–1361.

    Google Scholar 

  • Grabowski J, Gantt E (1978) Photophysical properties of phycobiliproteins from phycobilisomes: fluorescence lifetimes, quantum yields, and polarization spectra. Photochem. Photobiol. 28: 39–45.

    Google Scholar 

  • Hermiston ML, Latham CB, Gordon JI, Roth KA (1992) Simultaneous localization of six antigens in single sections of transgenic mouse intestine using a combination of light and fluorescence microscopy. J. Histochem. Cytochem. 40: 1283–1290.

    Google Scholar 

  • Honsell E, Kosovel V, Talarico L (1984) Phycobiliprotein distribution in Rhodophyta: studies and interpretation on the basis of their absorption spectra. Bot. Mar. 27: 1–16.

    Google Scholar 

  • Klotz AV, Glazer AN (1985) Characterization of the bilin attachment sites in R-phycoerythrin. J. biol. Chem. 260: 4856–4863.

    Google Scholar 

  • Loken MR, Keij JF, Kelley, KA (1987) Comparison of helium-neon and dye lasers for the excitation of allophycocyanin. Cytometry 8: 96–100.

    Google Scholar 

  • Lundell DJ, Glazer AN, DeLange RJ, Brown DM (1984) Bilin attachment sites in the α and β subunits of B-phycoerythrin. Amino acid sequence studies. J. biol. Chem. 259: 5472–5480.

    Google Scholar 

  • Mörschel E, Wehrmeyer W (1975) Cryptomonad biliprotein: phycocyanin-645 from aChroomonas species. Arch. Microbiol. 105: 153–158.

    Google Scholar 

  • Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem. 4: 105–111.

    Google Scholar 

  • Oi VT, Glazer AN, Stryer L (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J. Cell Biol. 93: 981–986.

    Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1990) Pigments, size, and distribution ofSynechococcus in the North Atlantic and Pacific oceans. Limnol. Oceanogr. 35: 45–58.

    Google Scholar 

  • Ong LJ, Glazer AN (1985) Crosslinking of allophycocyanin. Physiol. Vég. 23: 777–787.

    Google Scholar 

  • Ong LJ, Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways inSynechococcus spp. phycoerythrins. J. biol. Chem. 266: 9515–9527.

    Google Scholar 

  • Ong LJ, Glazer AN, Waterbury JB (1984) An unusual phycoerythrin from a marine cyanobacterium. Science 224: 80–83.

    Google Scholar 

  • Schirmer T, Bode W, Huber R (1987) Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution: A common principle of phycobilin-protein interaction. J. mol. Biol. 196: 677–695.

    Google Scholar 

  • Swanson RV, Ong LJ, Wilbanks SM, Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. II. Characterization of phycobiliproteins with unusually high phycourobilin content. J. biol. Chem. 266: 9528–9534.

    Google Scholar 

  • Swanson, RV, Zhou J, Leary JA, Williams T, de Lorimier R, Bryant DA, Glazer AN (1992) Characterization of phycocyanin produced bycpcE andcpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J. biol. Chem. 267: 16146–16154.

    Google Scholar 

  • Waggoner AS, Ernst LA, Chen C-H, Rechtenwald DJ (1993) A new fluorescent antibody label for three-color flow cytometry with a single laser. Ann. N.Y. Acad. Sci. 677: 185–193.

    Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacteriumSynechococcus. Can. J. Fish. aquat. Sci. 214: 71–120.

    Google Scholar 

  • Wedemayer GJ (1991) Phycobilins of cryptophycean phycobiliproteins. Ph.D. thesis, University of California, Berkeley.

  • Wedemayer GJ, Wemmer DE, Glazer AN (1991) Phycobilins of cryptophycean algae. Structures of novel bilins with acryloyl substituents from phycoerythrin 566. J. biol. Chem. 266: 4731–4741.

    Google Scholar 

  • Wemmer DE, Wedemayer GJ, Glazer AN (1993) Phycobilins of cryptophycean algae. Novel linkage of dihydrobiliverdin in a phycoerythrin 555 and a phycocyanin 645. J. biol. Chem. 268: 1658–1669.

    Google Scholar 

  • Wilbanks SM, Glazer AN (1993) Rod structure of a phycoerythrin II-containing phycobilisome. II. Complete sequence and bilin attachment site of a phycoerythrin γ subunit. J. biol. Chem. 268: 1236–1241.

    Google Scholar 

  • Yeh SW, Ong LJ, Clark JH, Glazer AN (1987) Fluorescence properties of allophycocyanin and a crosslinked allophycocyanin trimer. Cytometry 8: 91–95.

    Google Scholar 

  • Zhou J, Gasparich GE, Stirewalt VL, de Lorimier R, Bryant, DA (1992) ThecpcE andcpcF genes ofSynechococcus sp. PCC 7002. Construction and phenotypic characterization of interposon mutants. J. biol. Chem. 267: 16138–16145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazer, A.N. Phycobiliproteins — a family of valuable, widely used fluorophores. J Appl Phycol 6, 105–112 (1994). https://doi.org/10.1007/BF02186064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186064

Key words

Navigation