Skip to main content
Log in

Rotifer populations in plankton communities: Energetics and life history strategies

  • Multi-Author Reviews
  • Population Biology of Freshwater Invertebrates
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Rotifers play an important role in many freshwater plankton communities. The populations are controlled from ‘bottom-up’ depending on different food quantities and qualities. As threshold food levels for rotifers are higher than for cladocerans they are often outcompeted when food concentrations are lowered by the clearance activity of cladocerans. Rotifers also are controlled from ‘top-down’ by predators, especially by copepods, by instars ofChaoborus and by predatory rotifers. Mechanical interference by daphnids is considered here as a special case of ‘predation’. Different defense mechanisms are discussed. At the cost of higher food concentrations (high Ks-food levels) rotifers may exhibit high maximum growth rates (rmax) and short times for their population development. This ability increases with rotifer body size. Within this taxonomic unity, therefore, different life history strategies have developed. These strategies may be characterized by the rmax/Ks-model presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allan, J. D., Life history patterns in zooplankton. Am. Nat.110 (1976) 165–80.

    Article  Google Scholar 

  2. Arndt, H., Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) — a review. Hydrobiologica255/256 (1993) 231–246.

    Article  Google Scholar 

  3. Banse, K., and Mosher, S., Adult body mass and annual production/biomass relationship of field populations. Ecol. Monogr.50 (1980) 355–379.

    Article  Google Scholar 

  4. Bennett, W. N., and Boraas, M. E., A demographic profile of fastest growing metazoan: a strain ofBrachionus calyciflorus (Rotifera). Oikos55 (1989) 365–369.

    Article  Google Scholar 

  5. Bergquist, A. M., Carpenter, S. R., and Latino, J. C., Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnol. Oceanogr.30 (1985) 1037–1045.

    Article  Google Scholar 

  6. Bern, L., Zooplankton grazing on (methyl-3H)thymidine-labelled natural particle assemblages: determination of filtering rates and food selectivity. Freshwat. Biol.17 (1987) 151–159.

    Article  Google Scholar 

  7. Berninger, U. G., Wickham, S., and Finlay, B. J., Trophic coupling within the microbial food web: a study with fine temporal resolution in an eutrophic freshwater ecosystem. Freshwat. Biol.30 (1993) 419–432.

    Article  Google Scholar 

  8. Bogdan, K. G., and Gilbert, J. J., Seasonal patterns of feeding by natural populations ofKeratella, Polyarthra, andBosmina: Clearance rates, selectivities, and contributions to community grazing. Limnol. Oceanogr.27 (1982) 918–934.

    Article  Google Scholar 

  9. Bogdan, K. G., and Gilbert, J. J., Body size and food size in freshwater zooplankton. Proc. natl Acad. Sci. USA81 (1984) 6427–6431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bogdan, K. G., and Gilbert, J. J., Quantitative comparison of food niches in some freshwater zooplankton. A multi-tracer-cell approach. Oecologia72 (1987) 331–340.

    Article  CAS  PubMed  Google Scholar 

  11. Boraas, M. E., Population dynamics of food-limited rotifers in two-stage chemostat culture. Limnol. Oceanogr.28 (1983) 546–563.

    Article  Google Scholar 

  12. Børsheim, K. Y., and Andersen, S., Grazing and food size selection by crustacean zooplankton compared to production of bacteria and phytoplankton in a shallow Norwegian mountain lake. J. Plankton Res.9 (1987) 367–379.

    Article  Google Scholar 

  13. Brandl Z., and Fernando, C. H., Prey selection by the cyclopoid copepodsMesocyclops edax andCyclops vicinus. Verh. int. Ver. theor. angew. Limmol.20 (1978) 2505–2510.

    Google Scholar 

  14. Brendelberger, H., Filter mesh-size and retention efficiency for small particles: comparative studies with Cladocera. Arch. Hydrobiol. Beih. (Ergebn. Limnol.)21 (1985) 135–146.

    Google Scholar 

  15. Brendelberger, H., and Geller, W., Variability of filter structures in eightDaphnia species: mesh sizes and filtering areas. J. Plankton Res.7 (1985) 473–486.

    Article  Google Scholar 

  16. Burns, C. W., The relationship between body size of filter feeding Cladocera and the maximum size of particles ingested. Limnol. Oceanogr.31 (1968) 848–858.

    Article  Google Scholar 

  17. Burns, C. W., and Gilbert, J. J., Direct observation of the mechanism of interference betweenDaphnia andKeratella cochlearis. Limnol. Oceanogr.31 (1986) 859–866.

    Article  Google Scholar 

  18. Burns, C. W., and Gilbert, J. J., Effects of daphnid size and density of interference betweenDaphnia andKeratella cochlearis. Limnol. Oceanogr.31 (1986) 848–858.

    Article  Google Scholar 

  19. Calow, P., Economics of ontogeny — adaptional aspects, in: Evolutionary Ecology, pp. 81–101. Ed. B. Shorroks. Blackwell Scientif. Publ., Oxford 1984.

    Google Scholar 

  20. Conde-Porcuna, J. M., Morales-Baquero, R., and Cruz-Pizaro, L., Effects ofDaphnia longispina on rotifer populations in a natural environment: relative importance of food limitation and interference competition. J. Plankton Res.16 (1993) 691–706.

    Article  Google Scholar 

  21. Connell, J. H., Diversity in tropical rainforests and coral reefs. Science109 (1978) 1304–1310.

    Google Scholar 

  22. Cuker, B. E., and Hudson, L. Jr., Type of suspended clay influences zooplankton response to phosphorus loading. Limnol. Oceanogr.37 (1992) 566–576.

    Article  CAS  Google Scholar 

  23. DeAngelis, D. L., and Waterhouse, J. C., Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monogr.57 (1987) 1–21.

    Article  Google Scholar 

  24. DeMott, W. R., Feeding selectivities and relative ingestion rates ofDaphnia andBosmina., Limnol. Oceanogr.27 (1982) 518–527.

    Article  Google Scholar 

  25. DeMott, W. R., Relations between filter mesh-size, feeding mode, and capture efficiency for cladoceran feeding on ultrafine particles. Arch. Hydrobiol. Beih. (Ergebn. Limnol.)21 (1985) 125–134.

    Google Scholar 

  26. DeMott, W. R., The role of taste in food selection by freshwater zooplankton. Oecologia69 (1986) 334–340.

    Article  PubMed  Google Scholar 

  27. DeMott, W. R., The role of competition in zooplankton succession, in: Plankton Ecology. Succession in Plankton Communities, pp. 195–252. Ed. U. Sommer. Springer Verlag, Berlin, Heidelberg, New York 1989.

    Google Scholar 

  28. Dieffenbach, H., and Sachse, R., Biologische Untersuchungen an Rädertierchen in Teichgewässern. Int. Revue ges. Hydrobiol. suppl.3 (1911) 1–93.

    Google Scholar 

  29. Dumont, H. J., Biotic factors in the population dynamics of rotifers. Arch. Hydrobiol. Beih. (Ergebn. Limnol.)8 (1977) 98–112.

    Google Scholar 

  30. Duncan, A., and Gulati, R. D., Feeding studies with natural food particles on tropical species of planktonic rotifers, in: Limnology of Parakrama Samundra, Sri Lanka, pp. 117–125. Ed. F. Schiemer. W. Junk Publishers, The Hague 1983.

    Chapter  Google Scholar 

  31. Duncan, A., Food limitation and body size in the life cycle of planktonic rotifers and cladocerans. Hydrobiologia186/187 (1989) 11–28.

    Article  Google Scholar 

  32. Edmondson, W. T., Reproductive rate of planktonic rotifers as related to food and temperature in nature. Ecol. Monogr.35 (1965) 61–111.

    Article  Google Scholar 

  33. Egloff, D. A., Food and growth relations of the marine microzooplankter,Synchaeta cecilia (Rotifera). Hydrobiologia157 (1988) 129–141.

    Article  Google Scholar 

  34. Ejsmont-Karabin, J., Studies on the feeding of planktonic polyphageAsplanchna priodonta Gosse (Rotatoria). Ekologia Polska Ser. A.22 (1974) 311–317.

    Google Scholar 

  35. Emmerson, W. D., Predation and energetics ofPenaeus indicus (Decapoda Penaeidae) larvae feeding onBrachionus plicatilis andArtemia nauplii. Aquaculture38 (1984) 201–209.

    Article  Google Scholar 

  36. Filatov, V. P., The efficiency of natural food by Carp larvae (Cyprinus carpio). Vopr. Ikhtiol. (Moskva)12 (1972) 886–892.

    Google Scholar 

  37. Frost, B. W., Food limitation of the planktonic marine copepodsCalanus pacificus andPseudocalanus sp. in a temperate fjord. Arch. Hydrobiol. Beih. (Ergebn. Limnol.)21 (1985) 1–13.

    Google Scholar 

  38. Fulton, R. S. III, and Pearl, H. W., Toxic and inhibitory effects of the blue-green algaMicrocystis aeruginosa on herbivorous zooplankton. J. Plankton Res.9 (1987) 837–855.

    Article  Google Scholar 

  39. Fulton, R. S. III, and Pearl, H. W., Effects of the blue-green algaMicrocystis aeruginosa on zooplankton competitive relations. Oecologia76 (1988) 383–389.

    Article  PubMed  Google Scholar 

  40. Galindo, M. D., Guisande, C., and Toja, J., Reproductive investment of several rotifer species. Hydrobiologia255/256 (1993) 317–324.

    Article  Google Scholar 

  41. Geller, W., Die Nahrungsaufnahme vonDaphnia pulex in Abhängigkeit von der Futterkonzentration, der Temperatur, der Körpergröße und dem Hungerzustand der Tiere. Arch. Hydrobiol. suppl.48 (1975) 47–107.

    Google Scholar 

  42. Geller, W., and Müller, H., The filtration apparatus of cladocera filter mesh sizes and their implications on food selectivity. Oecologia49 (1981) 316–321.

    Article  PubMed  Google Scholar 

  43. Gilbert, J. J., and Starkweather, P. L., Feeding in the rotiferBrachionus calyciflorus. I. Regulator mechanisms. Oecologia28 (1977) 125–131.

    Article  PubMed  Google Scholar 

  44. Gilbert, J. J., and Williamson, C. E., Predator prey behavior and its effect on rotifer survival in associations ofMesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, andKeratella cochlearis. Oecologia37 (1978) 13–22.

    Article  PubMed  Google Scholar 

  45. Gilbert, J. J., Observation of the susceptibility of some protists and rotifera to predation byAsplanchna girodi. Hydrobiologia73 (1980) 87–91.

    Article  Google Scholar 

  46. Gilbert, J. J., and Bogdan, K. G., Selectivity ofPolyarthra andKeratella for flagellate and aflagellate cells. Verh. int. Verein. theor. angew. Limnol.21 (1981) 1515–1521.

    Google Scholar 

  47. Gilbert, J. J., and Bogdan, K. G., Rotifer grazing: In situ studies on selectivity and rates, in: Trophic interaction within aquatic ecosystems, pp. 97–133. Eds. D. G. Meyers and J. R. Strickler. AAAS Selected Symposium 85, 1984.

  48. Gilbert, J. J., Competition between rotifers andDaphnia. Ecology66 (1985) 1943–1950.

    Article  Google Scholar 

  49. Gilbert, J. J., Suppression of rotifer populations byDaphnia. A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr.33 (1988) 1286–1303.

    Article  Google Scholar 

  50. Gilbert, J. J., Susceptibilities of ten rotifer species to interference fromDaphnia pulex. Ecology69 (1988) 1826–1838.

    Article  Google Scholar 

  51. Gilbert, J. J., The effect ofDaphnia interference on a natural rotifer and ciliate community. Short-term bottle experiments. Limnol. Oceanogr.34 (1989) 606–617.

    Article  Google Scholar 

  52. Gilbert, J. J., Differential effects ofAnabaena affinis on cladocerans and rotifers: Mechanisms and implications. Ecology71 (1990) 1727–1740.

    Article  Google Scholar 

  53. Gilbert, J. J., and Durand, M. W., Effect ofAnabaena flos-aqae on the abilities ofDaphnia andKeratella to feed and reproduce on unicellular algae. Freshwat. Biol.24 (1990) 577–596.

    Article  Google Scholar 

  54. Gilbert, J. J., and Jack, J. D., Rotifers as predators on small ciliates. Hydrobiologia255/256 (1993) 247–253.

    Article  Google Scholar 

  55. Gliwicz, Z. M., Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. Pol. Ser. A.17 (1969) 663–708.

    Google Scholar 

  56. Gliwicz, Z. M., and Siedlar, E., Food size limitation and algae interfering with food collection inDaphnia. Arch. Hydrobiol.88 (1980) 155–177.

    Google Scholar 

  57. Gliwicz, Z. M., and Pijanowska, J., The role of predation in zooplankton succession, in: Plankton Ecology. Succession in Plankton Communities, pp. 253–298. Ed. U. Sommer. Springer Verlag, Berlin, Heidelberg, New York 1989.

    Google Scholar 

  58. Gliwicz, Z. M., Food thresholds and body size in cladocerans. Nature343 (1990) 638–640.

    Article  Google Scholar 

  59. Gliwicz, Z. M., and Lampert, W., Food thresholds inDaphnia species in the absence and presence of blue-green filaments. Ecology7 (1990) 691–702.

    Article  Google Scholar 

  60. Gophen, M., Food and feeding habits ofMesocyclops leuckarti (Claus) in Lake Kinneret (Israel). Freshwat. Biol.7 (1977) 513–518.

    Article  Google Scholar 

  61. Gould, S. J., Ontogeny and phylogeny. Harvard University Press, Cambridge, Mass. 1977.

    Google Scholar 

  62. Goulden, C. E., and Henry, L. B. D., Egg size, postembryonic yolk, and survival ability. Oecologia72 (1987) 28–31.

    Article  CAS  PubMed  Google Scholar 

  63. Güde, H., The role of grazing on bacteria in plankton succession, in: Plankton Ecology. Succession in Plankton Communities, pp. 337–358. Ed. U. Sommer. Springer Verlag, Berlin, Heidelberg, New York 1989.

    Google Scholar 

  64. Guerrero, R., Abella, C., and Miracle, M. R., Spatial and temporal distribution of bacteria in a meromictic karstic lake basin: relationships with physicochemical parameters and zooplankton. Verh. int. Verein. theor. angew. Limnol.20 (1978) 2264–2271.

    Google Scholar 

  65. Guisande, C., and Mazuelos, N., Reproductive pattern ofBrachionus calyciflorus Pallas at different food concentrations. J. Plankton Res.13 (1991) 279–286.

    Article  Google Scholar 

  66. Guisande, C., Galindo, M. D., Gallan, F. M., and Oliveros, F., The cost of reproduction in the rotiferBrachionus calycifloris. Int. Revue ges. Hydrobiol.78 (1991) 493–499.

    Article  Google Scholar 

  67. Guiset, A., Stomach contents inAsplanchna andPloesoma. Arch. Hydrobiol. Beih. (Ergebn. Limnol.)8 (1977) 126–129.

    Google Scholar 

  68. Gulati, R. D., Ejsmont-Karabin, J., Rooth, J., and Siewertsen, K., A laboratory study of phosphorus and nitrogen excretion ofEuchlanis dilatata luksinna Hydrobiologia,186/187 (1989) 347–354.

    Article  Google Scholar 

  69. Guma'a, S. A., The food and feeding habits of young perchPerca fluviatilis in Windermere. Freshwat. Biol.8 (1978) 177–187.

    Article  Google Scholar 

  70. Hall, D. J., Threlkeld, S. T., Burns, C. W., and Crowley, P. H., The size-efficiency hypothesis and the size structure of zooplankton communities. Ann. Rev. ecol. Syst.7 (1976) 177–208.

    Article  Google Scholar 

  71. Hammer, C., Feeding behavior of roach (Rutilus rutilus) larvae and the fry of perch (Perca fluviatilis) in Lake Lankau. Arch. Hydrobiol.103 (1985) 61–74.

    Google Scholar 

  72. Hardin, G., The competitive exclusion theory. Science131 (1960) 1292–1297.

    Article  CAS  PubMed  Google Scholar 

  73. Hartmann, U., Die Populationsdynamik der pelagischen RotatorienBrachionus angularis undNotholca caudata in Abhängigkeit von der Futterkonzentration und der Temperatur. Diplomarbeit Fak. Biologie Universität München, 1987.

  74. Havens, K. E., An experimental analysis of macrozooplankton, microzooplankton and phytoplankton interactions in a temperate eutrophic lake. Arch. Hydrobiol.127 (1993) 9–20.

    Article  Google Scholar 

  75. Heinbokel, J. F., Coats, D. W., Henderson, K. W., and Tyler, M. A., Reproduction rates and secondary production of three species of the rotifer genusSynchaeta in the estuarine Potomac River. J. Plankton Res.10 (1988) 659–674.

    Article  Google Scholar 

  76. Herzig, A., Comparative studies on the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia104 (1983) 237–246.

    Article  Google Scholar 

  77. Hessen, D. O., Nutrient element limitation of zooplankton production. Am. Nat.140 (1992) 799–814.

    Article  Google Scholar 

  78. Hirayama, K., Maruyama, I., and Maeda, T., Nutritional effect of freshwaterChlorella on growth of the rotiferBrachionus plicatilis. Hydrobiologia186/187 (1989) 39–42.

    Article  Google Scholar 

  79. Höffgen, B., Abundanz- und Populationsdynamik des Mikrozooplanktons im Brunnsee. Diplomarbeit Fak. Biol. Univ. München 1987.

  80. Horn, W., Investigation into the food selectivity of the planktic crustaceansDaphnia hyalina, Eudiaptomus gracilis andCyclops vicinus. Int. Rev. ges. Hydrobiol.70 (1985) 603–612.

    Article  Google Scholar 

  81. Horn, W., Results regarding the food of the planktonic crustaceansDaphnia hyalina andEudiaptomus gracilis. Int. Revue ges. Hydrobiol.70 (1985) 703–709.

    Article  Google Scholar 

  82. Hrbácek, J., Dvoráková, M., Korínek, V., and Procházkóva, L., Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of the whole plankton assembladge. Verh. int. Verein. angew. theor. Limnol.14 (1961) 192–195.

    Google Scholar 

  83. Huber, M., Populationsdynamik der Rädertiere des Fasanerie-Sees im Sommer 1981. Diplomarbei Fak. Biol. Univ. München 1982.

  84. Infante, A., Natural food of herbivorous zooplankton of Lake Valencia (Venezuela). Arch. Hydrobiol.82 (1978) 347–358.

    Google Scholar 

  85. Jacobs, J., Coexistence in similar zooplankton species by differential adaptation to reproduction and escape in an environment with fluctuating food and energy densities. III. Laboratory experiments. Oecologia35 (1978) 35–54.

    Article  PubMed  Google Scholar 

  86. Jürgens, K., Impact ofDaphnia on planktonic microbial food webs — a review. Mar. microb. Food Webs8 (1994) 295–324.

    Google Scholar 

  87. Karabin, A., The pressure of pelagic predators of the genusMesocyclops (Copepoda, Crustacea) on small zooplankton. Ekol. Pol.26 (1978) 241–257.

    Google Scholar 

  88. King, C. E., Food, age, and the dynamics of laboratory population of rotifers. Ecology48 (1967) 111–128.

    Article  Google Scholar 

  89. Kirk, K. L., and Gilbert, J. J., Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology71 (1990) 1741–1755.

    Article  Google Scholar 

  90. Korstad, J., Vadstein, O., and Olsen, Y., Feeding kinetics ofBrachionus plicatilis fedIsochrysis galbana. Hydrobiologia186/187 (1989) 51–57.

    Article  Google Scholar 

  91. Korstad, J., Olsen, Y., and Vadstein, O., Life history characteristics ofBrachionus plicatilis (Rotifera) fed different algae. Hydrobiologia186/187 (1989) 43–50.

    Article  Google Scholar 

  92. Koste, W.,Synchaeta grandis, ein in Mitteleuropa vom Aussterben bedrohtes Rädertier. Mikrokosmos1978 (1978) 331–336.

    Google Scholar 

  93. Koste, W., Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk begründet von Max Voigt. 2nd ed. vol. 1 (Textband), vol. 2 (Tafelband). Bornträger, Stuttgart 1978.

    Google Scholar 

  94. Lampert, W., and Schober, U., The importance of “threshold” food concentrations, in: Evolution and Ecology of Zooplankton Communities, pp. 264–267. Ed. W. C. Kerfoot. University Press of New England, Hanover, N.H. 1980.

    Google Scholar 

  95. Lampert, W., and Muck, P., Multiple aspects of food limitation in zooplankton communities: theDaphnia-Eudiaptomus example. Arch. Hydrobiol. Beih. (Ergebn. Limnol.)21 (1985) 311–322.

    Google Scholar 

  96. Lampert, W., and Rothhaupt, K. O., Alternating dynamics of rotifers andDaphnia magna in a shallow lake. Arch. Hydrobiol.120 (1991) 447–456.

    Article  Google Scholar 

  97. Lehman, J. T., Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments. Limnol. Oceanogr.33 (1988) 931–945.

    Google Scholar 

  98. Lubzens, E., Marko, A., and Tietz, A., De nuovo synthesis of fatty acids in the rotiferBrachionus plicatilis. Aquaculture47 (1985) 27–37.

    Article  CAS  Google Scholar 

  99. Lubzens, E., Raising rotifers for use in aquaculture (a review). Hydrobiologia147 (1987) 245–255.

    Article  CAS  Google Scholar 

  100. Lubzens, E., Tandler, A., and Minkoff, G., Rotifers as food in aquaculture. Hydrobiologia186/187 (1989) 387–400.

    Article  Google Scholar 

  101. Lynch, M., The evolution of cladoceran life histories. Quart. Rev. Biol.55 (1980) 23–41.

    Article  Google Scholar 

  102. MacArthur, R. H., and Wilson, E. O., The theory of island biogeography. Princeton University Press, Princeton, NJ 1967.

    Google Scholar 

  103. MacIsaac, H. J., and Gilbert, J. J., Does exploitative competition fromDaphnia limit the abundance ofKeratella in Loch Leven? A reassessment of May and Jones (1989). J. Plankton Res.12 (1990) 1315–1322.

    Article  Google Scholar 

  104. MacIsaac, H. J., and Gilbert, J. J., Competition betweenKeratella cochlearis andDaphnia ambigua: effects of temporal patterns of food supply. Freshwat. Biol.25 (1991) 189–198.

    Article  Google Scholar 

  105. Maly, E. J., A laboratory study of the interaction between the predatory rotiferAsplanchna andParamecium. Ecology50 (1969) 59–73.

    Article  Google Scholar 

  106. May, L., and Jones, D. H., Does interference competition fromDaphnia affect populations ofKeratella cochlearis in Loch Leven, Scotland? J. Plankton Res.11 (1989) 445–462.

    Article  Google Scholar 

  107. Mikschi, E., Rotifer distribution in relation to temperature and oxygen content. Hydrobiologia186/187 (1989) 209–214.

    Article  Google Scholar 

  108. Moore, M. V., and Gilbert, J. J., Age-specificChaoborus predation on rotifer prey. Freshwat. Biol.17 (1987) 223–236.

    Article  Google Scholar 

  109. Naumann, E., Spezielle Untersuchungen über die Ernährungsbiologie des tierischen Limnoplanktons II. (Copepoden, Rotatoria). Lunds Univ. Arskr. NF.19 (1923) 3–17.

    Google Scholar 

  110. Nauwerck, A., Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symp. Bot. Uppsala17 (1963) 1–163.

    Google Scholar 

  111. Neill, W. E., Regulation of rotifer densities by crustacean zooplankton in an oligotrophic montane lake in British Columbia. Oecologia61 (1984) 175–181.

    Article  PubMed  Google Scholar 

  112. Neill, W. E., The effects of herbivore competition upon the dynamics ofChaoborus predation. Arch. Hydrobiol. Beih. (Ergebn. Limnol.)21 (1985) 483–491.

    Google Scholar 

  113. Nogrady, T., Wallace, R. I., and Snell, T. W., Rotifera, vol. 1. Biology, ecology and systematics. SBP Academic Publishers bv, The Hague 1993.

    Google Scholar 

  114. Ooms-Wilms, A. L., Postema, G., and Gulati, R. D., Clearance rates of bacteria by the rotiferFilinia longiseta (Ehrb.) measured using three tracers. Hydrobiologia255/256 (1993) 255–260.

    Article  Google Scholar 

  115. Orcutt, J. D. J., and Pace, M. L., Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic, monomictic lake with a note on rotifer sampling techniques. Hydrobiologia119 (1984) 73–80.

    Article  Google Scholar 

  116. Pace, M. L., and Orcutt, J. D., The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr.26 (1981) 822–830.

    Article  Google Scholar 

  117. Pace, M. L., McManus, G. B., and Findlay, S. E. G., Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr.35 (1990) 795–808.

    Article  Google Scholar 

  118. Pianka, E. R., r and K selection or b and d selection? Am. Nat.106 (1972) 581–588.

    Article  Google Scholar 

  119. Pianka, E. R., Evolutionary ecology. Harper and Row Publishers, New York 1978.

    Google Scholar 

  120. Pilarska, J., Eco-physiological studies onBrachionus rubens Ehrbg. (Rotatoria). II. Production and respiration. Polski Archiwum Hydrobiologii24 (1977) 329–341.

    Google Scholar 

  121. Platzek, J., Die Nahrungsaufnahme planktischer Crustaceen. Grazing-Experimente in einem eutrophen Baggersee. Diplomarbeit Fak. Biol. Univ. München 1986.

  122. Porter, K. G., Gerritsen, J., and Orcutt, J. D. J., The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration byDaphnia. Limnol. Oceanogr.27 (1982) 935–949.

    Article  Google Scholar 

  123. Porter, K. G., Feig, Y. S., and Vetter, E. F., Morphology, flow regimes, and filtering rates ofDaphnia, Ceriodaphnia, andBosmina fed natural bacteria. Oecologia58 (1983) 156–163.

    Article  PubMed  Google Scholar 

  124. Porter, K. G., Orcutt, J. D., and Gerritsen, J., Functional response and fitness in a generalist filter feeder,Daphnia magna (Cladocera, Crustacea). Ecology64 (1983) 735–742.

    Article  Google Scholar 

  125. Pourriot, R., Recherches sur l'ecologie des rotifères. Vie Milieu21 (1965) 5–181.

    Google Scholar 

  126. Pourriot, R., QuelquesTrichocera (Rotifères) et leurs regimes alimentaires. Ann. Hydrobiol.1 (1970) 155–171.

    Google Scholar 

  127. Pourriot, R., Rapports entre la température, la taille des adultes, la longuer des oufs et le taux de développement embryonnaire chezBrachionus calyciflorus Pallas (Rotifère). Ann. Hydrobiol.4 (1973) 103–115.

    Google Scholar 

  128. Pourriot, R., Food and feeding habits of the Rotifera. Arch. Hydrobiol. Beih. (Ergebn. Limnol.)8 (1977) 243–260.

    Google Scholar 

  129. Reynolds, C. S., Padisák, J., and Sommer, U., Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia249 (1993) 183–188.

    Article  Google Scholar 

  130. Richman, S., and Dodson, S. I., The effect of food quality on feeding and respiration byDaphnia andDiaptomus. Limnol. Oceanogr.28 (1983) 948–956.

    Article  Google Scholar 

  131. Robertson, J. R., and Salt, G. W., Responses in growth, mortality, and reproduction to variable food levels by the rotifer,Asplanchna girodi. Ecology62 (1981) 1585–1596.

    Article  Google Scholar 

  132. Romanovsky, Y. E., Food limitation and life-history strategies in cladoceran crustaceans. Arch. Hydrobiol. Ergebn. Limnol.21 (1985) 363–372.

    Google Scholar 

  133. Ross, P. E., and Munawar, M., Preference for nanoplankton size fractions in lake Ontario zooplankton grazing. J. Great Lakes Res.7 (1981) 65–67.

    Article  Google Scholar 

  134. Rothhaupt, K. O., Population growth rates of two closely related rotifer species: effects of food quantity, particle size, and nutritional quality. Freshwat. Biol.23 (1990) 561–570.

    Article  Google Scholar 

  135. Rothhaupt, K. O., Differences in particle-size dependent feeding efficiencies of closely related rotifer species. Limnol. Oceanogr.35 (1990) 16–23.

    Article  Google Scholar 

  136. Rothhaupt, K. O., Changes of the functional responses of the rotifersBrachionus rubens andBrachionus calyciflorus with particle sizes. Limnol. Oceanogr.35 (1990) 24–32.

    Article  Google Scholar 

  137. Rothhaupt, K. O., Resource competition of herbivorus zooplankton. A review of approaches and perspectives. Arch. Hydrobiol.118 (1990) 1–29.

    Article  Google Scholar 

  138. Rothhaupt, K. O., The influence of toxic and filamentous blue-green algae on feeding and population growth of the rotiferBrachionus rubens. Int. Revue ges. Hydrobiol.76 (1991) 67–72.

    Article  Google Scholar 

  139. Rothhaupt, K. O., Rotifers and continuous culture techniques: model systems for testing mechanistic concepts of consumer-resource interactions, in: Plankton regulation dynamics. Experiments and models in rotifer continuous cultures, Ecological Studies vol. 98, pp. 178–192. Ed. N. Walz. Springer Verlag, Berlin 1993.

    Chapter  Google Scholar 

  140. Ruttner-Kolisko, A., Rotatorien, in: Die Binnengewässer. Das Zooplankton der Binnengewässer. 1 Teil, vol. 26, pp. 99–234. Eds H. J. Elster and W. Ohle. Schweizerbart, Stuttgart 1972.

    Google Scholar 

  141. Salt, R. W., Sabbadini, G. F., and Commins, M. L., Trophi morphology relative to food habits in six species of rotifers (Asplanchnidae). Trans. Am. microsc. Soc.97 (1978) 469–485.

    Article  Google Scholar 

  142. Sanders, R. W., Porter, K. G., Bennett, S. J. and Debiase, A. E., Seasonal pattern of bacterivory by flagellates, ciliates, rotifer and cladocerans in a freshwater planktonic community. Limnol. Oceanogr.34 (1989) 673–687.

    Article  Google Scholar 

  143. Santer, B., and Van den Bosch, F., Herbivorous nutrition ofCyclops vicinus: the effect of a pure algal diet on feeding, development, reproduction and life cycle. J. Plankton Res.16 (1994) 171–195.

    Article  Google Scholar 

  144. Scheda, S. M., and Cowell, B. C., Rotifer grazers and phytoplankton seasonal experiments on natural communities. Arch. Hydrobiol.114 (1988) 31–44.

    Article  Google Scholar 

  145. Schiemer, F., Bioenergetic niche differentiation of aquatic invertebrates. Verh. int. Verein. angew. theor. Limnol.22 (1985) 3014–3018.

    Google Scholar 

  146. Scott, J. M., Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J. mar. biol. Ass. U.K.60 (1980) 681–702.

    Article  CAS  Google Scholar 

  147. Seaman, M. T., Gophen, M., Cavari, B. Z., and Azoulay, B.,Brachionus calyciflorus Pallas as an agent for removal ofE. coli in sewage ponds. Hydrobiologia135 (1986) 55–60.

    Article  Google Scholar 

  148. Sierszen, M. E., Variable selectivity and the role of nutritional quality in food selection by a planktonic rotifer. Oikos59 (1990) 241–247.

    Article  Google Scholar 

  149. Snell, T. W., and King, C. E., Lifespan and fecundity pattern in rotifers: the cost of reproduction. Evolution31 (1977) 882–890.

    Article  PubMed  Google Scholar 

  150. Snell, T. W., Blue-green algae and selection in rotifer populations. Oecologia46 (1980) 343–346.

    Article  PubMed  Google Scholar 

  151. Snell, T. W., Biebrich, C. J., and Fuerst, R., The effects of green and blue-green algal diets on the reproductive rate of the rotiferBrachionus plicatilis. Aquaculture3 (1983) 21–30.

    Article  Google Scholar 

  152. Starkweather, P. L., and Gilbert, J. J., Feeding in the rotiferBrachionus calyciflorus. 2. Effect of food density on feeding rates usingEuglena gracilis andRhodotorula glutinis. Oecologia28 (1977) 133–139.

    Article  PubMed  Google Scholar 

  153. Starkweather, P. L., Gilbert, J. J., and Frost, T. M., Bacterial feeding by the rotiferBrachinus calyciflorus. Clearence and ingestion rate, behavior and population dynamics. Oecologia44 (1979) 26–30.

    Article  PubMed  Google Scholar 

  154. Starkweather, P. L., Aspects of the feeding behavior and trophic ecology of suspension-feeding rotifers. Hydrobiologia73 (1980) 63–72.

    Article  Google Scholar 

  155. Starkweather, P. L., Trophic relationships between the rotiferBrachionus calyciflorus and the blue-green algaAnabaena flos-aquae. Verh. int. Verein. angew. theor. Limnol.21 (1981) 1507–1514.

    Google Scholar 

  156. Starkweather, P. L., and Kellar, P. E., Utilization of cyanobacteria byBrachionus calyciflorus: Anabaena flosaquae (NCR-44-1) as a sole or complementary food source. Hydrobiologia104 (1983) 373–377.

    Article  Google Scholar 

  157. Starkweather, P. L., Rotifera, in: Animal energetics, pp. 159–183. Eds T. S. Pandian and S. J. Vernberg. Academic Press, New York 1987.

    Google Scholar 

  158. Stemberger, R. S., A general approach to the culture of planktonic rotifers. Can. J. Fish. Aquat. Sci.38 (1981) 721–724.

    Article  Google Scholar 

  159. Stemberger, R. S., and Evans, M. S., Rotifer seasonal succession and copepod predation in Lake Michigan. J. Great Lakes Res.10 (1984) 417–428.

    Article  Google Scholar 

  160. Stemberger, R. S., and Gilbert, J. J., Body size, ration level, and population growth inAsplanchna. Oecologia64 (1984) 355–359.

    Article  PubMed  Google Scholar 

  161. Stemberger, R. S., and Gilbert, J. J., Body size, ration level, and population growth in planktonic rotifers. Ecology66 (1985) 1151–1159.

    Article  Google Scholar 

  162. Stemberger, R. S., The potential for population growth ofAscomorpha ecaudis. Hydrobiologia147 (1987) 297–301.

    Article  Google Scholar 

  163. Stemberger, R. S., and Gilbert, J. J., Defenses of planktonic rotifers against predators, in: Predation: Direct and Indirect Impacts on Aquatic Communities, pp. 227–239. Eds W. C. Kerfoot and A. Sih. University Press of New England, Hanover, London 1987.

    Google Scholar 

  164. Stenson, J. A. E., Fish impact on rotifer community structure. Hydrobiologia87 (1982) 57–64.

    Article  Google Scholar 

  165. Sterner, R. W., The role of grazers in phytoplankton succession, in: Plankton Ecology. Succession in Plankton Communities, pp. 107–170. Ed. U. Sommer. Springer Verlag, Berlin, Heidelberg, New York 1989.

    Google Scholar 

  166. Sterzynski, W., Fecundity and body size of planktonic rotifers in 30 Polish lakes of various trophic state. Ekol. Pol.27 (1979) 307–322.

    Google Scholar 

  167. Stich, H. B., Untersuchungen zur tagesperiodischen Vertikalwanderung planktischer Crustaceen in Bodensee. Diss. Fak. Biol. Univ. Freiburg 1985.

  168. Sulkin, S. D., The significance of diet in the growth and development of larvae of the blue crabCallinectes sapidus under laboratory conditions. J. expl mar. Biol. Ecol.20 (1975) 119–135.

    Article  Google Scholar 

  169. Swift, M. C., and Fedorenko, A. Y., Some aspects of prey capture byChaoborus larvae. Limnol. Oceanogr.20 (1975) 418–425.

    Article  Google Scholar 

  170. Taylor, W. D., Growth responses of ciliate protozoa to the abundance of their bacterial prey. Microb. Ecol.4 (1978) 207–214.

    Article  Google Scholar 

  171. Tessier, A. J., Henry, L. L., Goulden, C. E., and Durnad, M. W., Starvation inDaphnia: energy reserves and reproductive allocation. Limnol. Oceanogr.28 (1983) 667–676.

    Article  Google Scholar 

  172. Threlkeld, S. T., and Choinski, E., Rotifers, cladocerans and planktivorous fish: What are the major interactions? Hydrobiologia147 (1987) 239–243.

    Article  Google Scholar 

  173. Tóth, L. G., and Zánkai, N. P., Feeding ofCyclops vicinus (Uljanin) (Copepoda: Cyclopidae) in Lake Balaton on the basis of gut content analysis. Hydrobiologia122 (1985) 251–260.

    Article  Google Scholar 

  174. Tóth, L. G., Zankai, N. P., and Messner, O. M., Alga consumption of four dominant planktonic crustaceans in Lake Balaton (Hungary). Hydrobiologia145 (1987) 323–332.

    Article  Google Scholar 

  175. Urabe, J., Midsummer succession of rotifer plankton in a shallow eutrophic pond. J. Plankton Res.14 (1992) 851–866.

    Article  Google Scholar 

  176. Vadstein, O., Olsen, Y., Reinertsen, H., and Jemsen, A., The role of planktonic bacteria in phosphorus cycling in lakes—Sink and link. Limnol. Oceanogr.38 (1993) 1539–1544.

    Article  CAS  Google Scholar 

  177. Van der Bosch, F., and Ringelberg, J., Seasonal succession and population dynamics ofKeratella cochlearis (Ehrb.) andKellicottia longispina (Kellicott) in Lake Maarsseven I (Netherlands). Arch. Hydrobiol.103 (1985) 273–290.

    Google Scholar 

  178. Vanni, M., Competition in zooplankton communities: supression of small species byDaphnia pulex. Limnol. Oceanogr.31 (1986) 1039–1056.

    Article  CAS  Google Scholar 

  179. Vareschi, E., and Jacobs, J., The ecology of Lake Nakuru (Kenya). V. Production and consumption of consumer organisms. Oecologia61 (1984) 83–98.

    Article  CAS  PubMed  Google Scholar 

  180. Wallace, R. L., and Snell, T. W., Rotifera, in: Ecology and classification of North American Freshwater invertebrates, pp. 187–248. Eds. J. H. Thorp and A. P. Covich. Academic Press, San Diego, New York 1991.

    Google Scholar 

  181. Walz, N., Continuous culture of the rotiferKeratella cochlearis andBrachionus angularis. Arch. Hydrobiol.98 (1983) 70–92.

    Google Scholar 

  182. Walz, N., Individual culture and experimental population dynamics ofKeratella cochlearis (Rotatoria). Hydrobiologia107 (1983) 35–43.

    Article  Google Scholar 

  183. Walz, N., Elster, H.-J., and Mezger, M., The development of the rotifer community structure in Lake Constance during its eutrophication. Arch. Hydrobiol. suppl. (Monogr. Beitr.)74 (1987) 452–487.

    Google Scholar 

  184. Walz, N., Comparative population dynamics of the rotifersBrachionus angularis andKeratella cochlearis. Hydrobiologia147 (1987) 209–213.

    Article  Google Scholar 

  185. Walz, N., and Rothbucher, F., Effect of food concentration on body size, egg size, and population dynamics ofBrachionus angularis (Rotatoria). Verh. int. Verein. angew. theor. Limnol.24 (1987) 2750–2753.

    Google Scholar 

  186. Walz, N., Carbon metabolism and population dynamics ofBrachionus angularis andKeratella cochlearis, in: Plankton regulation dynamics. Experiments and models in rotifer continuous cultures. Ecological Studies, vol. 98, pp. 89–105. Ed. N. Walz. Springer Verlag, Berlin 1993.

    Chapter  Google Scholar 

  187. Walz, N., Elements of energy balance ofBrachionus angularis, in: Plankton regulation dynamics. Experiments and models in rotifer continuous cultures. Ecological Studies, vol. 98, pp. 106–122. Ed. N. Walz. Springer Verlag, Berlin 1993.

    Chapter  Google Scholar 

  188. Walz, N., Life history strategies of rotifers, in: Plankton regulation dynamics. Experiments and models in rotifer continuous cultures. Ecological Studies, vol. 98, pp. 193–214. Ed. N. Walz. Springer Verlag, Berlin, Heidelberg, New York 1993.

    Chapter  Google Scholar 

  189. Walz, N., Sarma, S. S. S., and Benker, U., Egg size in relation to body size in rotifers. An indication of reproductive strategy? Hydrobiologia (1995), in press.

  190. Walz, N., Sarma, S. S. S., and Benker, U., Are there temporarily different reproductive strategies in rotifers? (1995), in prep.

  191. Weglenska, T., The influence of various concentrations of natural food on the development fecundity and production of planktonic filtrators. Ekol. Pol. Ser. A19 (1971) 427–473.

    Google Scholar 

  192. Weithoff, G., and Walz, N., The influence of the filamentous cyanobacteriaPlanktothrix agardhii on population growth and reproductive pattern of the rotiferBrachionus calyciflorus. Hydrobiologia (1995), in press.

  193. Wickham, S. A., and Gilbert, J. J., Relative vulnerability of natural rotifer and ciliate communities to cladocerans laboratory and field experiments. Freshwat. Biol.26 (1991) 77–86.

    Article  Google Scholar 

  194. Wickham, S. A., Gilbert, J. J., and Berninger, U. G., Effects of rotifers and ciliates on the growth and survival ofDaphnia. J. Plankton Res.15 (1993) 317–334.

    Article  Google Scholar 

  195. Widigdo, B., Experimentelle Untersuchungen zur Eignung des RotatorsBrachionus calyciflorus als Erstfutter für Karpfenlarven (Cyprinus carpio L.). Diss. Fak. Biol. Univ. München (1987).

  196. Wiens, J. A., Resource systems, populations, and communities, in: A new ecology. Novel approaches to interactive systems, pp. 397–436. Eds. P. W. Price, C. N. Slobodchikoff and W. S. Gaud. John Wiley and Sons, New York 1984.

    Google Scholar 

  197. Williamson, C. E., Invertebrate predation on planktonic rotifers. Hydrobiologia104 (1983) 385–396.

    Article  Google Scholar 

  198. Williamson, C. E., and Butler, N. M., Predation on rotifers by the suspension-feeding calanoid copepodDiaptomus pallidus. Limnol. Oceanogr.31 (1986) 393–402.

    Article  Google Scholar 

  199. Yúfera, M., and Pascual, E., Effects of algal concentration on feeding and ingestion rate ofBrachionus plicatilis in mass culture. Hydrobiologia122 (1985) 181–187.

    Article  Google Scholar 

  200. Zankai, N. P., Predation ofCyclops vicinus (Copepoda: Cyclopoida) on small zooplankton animals in Lake Balaton (Hungary). Arch. Hydrobiol.99 (1984) 360–378.

    Google Scholar 

  201. Zimmermann, C., Die pelagischen Rotatorien des Sempachersees, mit spezieller Berücksichtigung der Brachioniden und der Ernährungsfrage. Schweiz. Z. Hydrol.36 (1974) 205–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walz, N. Rotifer populations in plankton communities: Energetics and life history strategies. Experientia 51, 437–453 (1995). https://doi.org/10.1007/BF02143197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143197

Key words

Navigation