Skip to main content
Log in

Estimates in quadratic formulas

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

LetA be a real symmetric positive definite matrix. We consider three particular questions, namely estimates for the error in linear systemsAx=b, minimizing quadratic functional minx(x T Ax−2b T x) subject to the constraint ‖x‖=α, α<‖A −1 b‖, and estimates for the entries of the matrix inverseA −1. All of these questions can be formulated as a problem of finding an estimate or an upper and lower bound onu T F(A)u, whereF(A)=A −1 resp.F(A)=A −2,u is a real vector. This problem can be considered in terms of estimates in the Gauss-type quadrature formulas which can be effectively computed exploiting the underlying Lanczos process. Using this approach, we first recall the exact arithmetic solution of the questions formulated above and then analyze the effect of rounding errors in the quadrature calculations. It is proved that the basic relation between the accuracy of Gauss quadrature forf(λ)=λ−1 and the rate of convergence of the corresponding conjugate gradient process holds true even for finite precision computation. This allows us to explain experimental results observed in quadrature calculations and in physical chemistry and solid state physics computations which are based on continued fraction recurrences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Amos, L. Berge, F.A. Brieva, A. Katsogiannis, L. Petris and L. Rikus, Off-shell properties of the two-nucleonT matrix, Phys. Rev. C37 (1988) 934–948.

    Google Scholar 

  2. P. Deufhard, Cascadic conjugate gradient methods for elliptic partial differential equations I. Algorithm and numerical results, preprint SC93-23, Konrad Zuse Zentrum, Berlin (1993).

    Google Scholar 

  3. G. Dahlquist, S.C. Eisenstat and G.H. Golub, Bounds for the error of linear systems of equations using the theory of moments, J. Math. Anal. Appl. 37 (1972) 151–166.

    Google Scholar 

  4. G. Dahlquist, G.H. Golub and S.G. Nash, Bounds for the error in linear systems, in:Proc. Workshop on Semi-Infinite Programming, ed. R. Hettich (Springer, 1978) pp. 154–172.

  5. P.J. Davis and P. Rabinowitz,Numerical Integration (Academic Press, 1984).

  6. B. Fischer and G.H. Golub, On the error computation for polynomial based iterative methods, Manuscript NA 92-21, Dept. of Comp. Sc., Stanford University (1992).

  7. B. Fischer and R. Freund, On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices, SIAM J. Sci. Comp. (1993) to appear.

  8. R. Freund and M. Hochbruck, Gauss quadratures associated with the Arnoldi process and the Lanczos algorithm, In:Linear Algebra for Large Scale and Real-Time Applications, eds. M.S. Moonen et al. (Kluwer Academic, Amsterdam, 1993) pp. 377–380.

    Google Scholar 

  9. W. Gautschi, Construction of Gauss-Christoffel quadrature formulas, Math. Comp. 22 (1968) 251–270.

    Google Scholar 

  10. W. Gautschi, A survey of Gauss-Christoffel quadrature formulae, in:E.B. Christoffel — The Influence of His Work on Mathematics and the Physical Sciences, eds. P.L. Bultzer and F. Fehér (Birkhäuser, Boston, 1981) pp. 73–157.

    Google Scholar 

  11. W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comp. 3 (1982) 289–317.

    Google Scholar 

  12. G.H. Golub and U.v. Matt, Quadratically constrained least squares and quadratic problems, Numer. Math. 59 (1991) 561–580.

    Google Scholar 

  13. G.H. Golub and G. Meurant, Matrices, moments and quadrature, Manuscript SCCM93-07, Dept. of Comp. Sc., Stanford University (1993).

  14. G.H. Golub and J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969) 221–230.

    Google Scholar 

  15. G.H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973) 318–334.

    Google Scholar 

  16. G.H. Golub, Bounds for matrix moments, Rocky Mountain J. Math. 4 (1974) 207–211.

    Google Scholar 

  17. G.H. Golub and M.D. Kent, Estimates of eigenvalues for iterative methods, Math. Comp. 53 (1989) 619–626.

    Google Scholar 

  18. A. Greenbaum, Behavior of slightly perturbed Lanczos and Conjugate Gradient recurrences, Lin. Alg. Appl. 113 (1989) 7–63.

    Google Scholar 

  19. A. Greenbaum and Z. Strakoš, Predicting the behavior of finite precision Lanczos and Conjugate Gradient computations, SIAM J. Matrix Anal. Appl. 13 (1992) 121–137.

    Google Scholar 

  20. G.H. Golub and Z. Strakoš, Estimates in quadratic formulas, Manuscript SCCM93-08, Dept. of Comp. Sci., Stanford University (1993).

  21. L.A. Hageman and D.M. Young,Applied Iterative Methods (Academic Press, 1981).

  22. M.R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for solving linear systems. J. Res. Natl. Bureau of Standards 49 (1952) 409–436.

    Google Scholar 

  23. J. Horáček and T. Sasakawa, Method of continued fractions with application to atomic physics, Phys. Rev. A30 (1984) 2274–2277.

    Google Scholar 

  24. J. Horáěk and T. Sasakawa, Method of continued fractions for on- and off-shellT matrix of local and nonlocal potentials, Phys. Rev. C37 (1985) 70–75.

    Google Scholar 

  25. J. Horáček, A note on iterative solution of scattering equations, Acta Phys. Polonica A71 (1987) 3–8.

    Google Scholar 

  26. J. Horáček, Extrapolation technique for solution of scattering integral equations, J. Phys. A: Math. Gen. 22 (1989) 1–9.

    Google Scholar 

  27. L. Knizhnerman, The simple Lanczos process: error estimates for the Gaussian quadrature formula and their applications, (1994), in preparation.

  28. M.D. Kent, Chebyshev, Krylov and Lanczos, matrix relationship and computations, Ph.D. Thesis, Stanford University, Stanford (1989).

    Google Scholar 

  29. J. Kautský and G.H. Golub, On the calculation of Jacobi matrices, Lin. Alg. Appl. 52/53 (1983) 439–455.

    Google Scholar 

  30. S. Karlin and L.S. Shapley,Geometry of Moment Spaces, AMS Memoirs 12 (AMS, Providence, 1953)

    Google Scholar 

  31. G. Moro and J.H. Freed, The Lanczos algorithm in molecular dynamics: calculation of spectral densities, in:Large Scale Eigenvalue Problems, eds. J. Cullum and R.A. Willoughby (Elsevier/North Holland, Amsterdam, 1986) pp. 143–161.

    Google Scholar 

  32. H.D. Mayer and S. Pal, A band-Lanczos method for computing matrix elements of a resolvent, J. Chem. Phys. 91 (1989) 6195–6204.

    Google Scholar 

  33. Y. Notay, On the convergence rate of the Conjugate Gradients in presence of rounding errors, Numer. Math. (1993), to appear.

  34. B.N. Parlett, Misconvergence in the Lanczos algorithm, Res. Rep. PAM-404, U. of California, Berkeley (1987).

    Google Scholar 

  35. C.C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, Ph.D. Thesis, U. of London (1971).

  36. C.C. Paige, Computational variants of the Lanczos method for the eigenproblem, J. Inst. Math. Appl. 10 (1972) 373–381.

    Google Scholar 

  37. C.C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, J. Inst. Math. Appl. 18 (1976) 341–349.

    Google Scholar 

  38. C.C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem, Lin. Alg. Appl. 34 (1980) 235–258.

    Google Scholar 

  39. W. Reinhardt,L 2 discretization of atomic and molecular electronic continua: moment, quadrature andJ-matrix techniques, Comp. Phys. Commun. 17 (1979) 1–21.

    Google Scholar 

  40. P.D. Robinson and A.J. Wathen, Variational bounds on the entries of the inverse of a matrix, IMA J. Numer. Anal. 12 (1992).

  41. E. Stiefel, Relaxationsmethoden bester Strategie zur Lösung Linearer Gleichungsysteme, Comm. Math. Helv. 29 (1955) 157–179.

    Google Scholar 

  42. H.D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp. 42 (1984) 115–136.

    Google Scholar 

  43. H.D. Simon, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods, Lin. Alg. Appl. 61 (1984) 101–131.

    Google Scholar 

  44. Z. Strakoš, On the real convergence rate of the Conjugate Gradient method, Lin. Alg. Appl. 154–156 (1991) 535–549.

    Google Scholar 

  45. Z. Strakoš and A. Greenbaum, Open questions in the convergence analysis of the Lanczos process for the real symmetric eigenvalue problem, IMA Preprint Series 934, IMA, U. of Minnesota (1992).

  46. G. Szegö,Orthogonal Polynomials, AMS Colloq. Publ. 23 (AMS, Providence, 1939).

    Google Scholar 

  47. H.S. Wilf,Mathematics for the Physical Sciences (Wiley, 1962).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

The work of this author was supported in part by the NSF under grant NSF CCR-8821078.

A part of this work was performed while visiting the Institute of Mathematics and Its Applications, University of Minnesota, and the Department of Computer Science, Stanford University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golub, G.H., Strakoš, Z. Estimates in quadratic formulas. Numer Algor 8, 241–268 (1994). https://doi.org/10.1007/BF02142693

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02142693

Keywords

Navigation