Skip to main content
Log in

The Binet-Pexider functional equation for rectangular matrices

  • Research Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

IfK is a field of characteristic 0 then the following is shown. Iff, g, h: M n (K) →K are non-constant solutions of the Binet—Pexider functional equation

$$f(AB) = \frac{1}{{n!}}\sum\limits_{\left| s \right| = n} {\left( {\begin{array}{*{20}c} n \\ {s_1 \cdots s_{n{\mathbf{ }} + {\mathbf{ }}r} } \\ \end{array} } \right)g(A^s )h(B_s )}$$

for rectangular matricesA ∈ M n ×(n + r) (K) andB ∈ M (n + r) ×n (K), and a fixed non-negative integerr thenf(X) = ab d(X), g(X) = a d(X), andh(X) = b d(X) wherea andb are arbitrary constants fromK andd: M n (K) →K is a non-constant solution of the Binet—Cauchy functional equation

$$d(AB) = \frac{1}{{n!}}\sum\limits_{\left| s \right| = n} {\left( {\begin{array}{*{20}c} n \\ {s_1 \cdots s_m } \\ \end{array} } \right)d(A^s )d(B_s )}$$

forA ∈ M n ×m (K) andB ∈ M M ×n (K) wheren ⩽ m ⩽ n + r. The general non-constant solution to (2) has been shown by Heuvers, Cummings, and K. P. S. bhaskara Rao, to bed(X) = φ(perX), whereφ is an isomorphism ofK, provided thatd(E) ≠ 0 for then × n matrixE with all entries 1/n. Heuvers and Moak have shown that the general non-constant solution to (2) is given byd(x) = μ(detX), whereμ is a non-constant multiplicative function onK ifm = n andd(E) = 0. Ifn ⩽ mn + 1 andd(E) = 0 they have shown that it is given byd(X) = φ(detX), where φ is an isomorphism ofK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.,Lectures on Functional Equations and Their Applications. Academic Press, New York, 1966.

    Google Scholar 

  2. Aczél, J. andDhombres, J.,Functional Equations in Several Variables. Cambridge University Press, New York, 1989.

    Google Scholar 

  3. Djoković, D. Ž.,On the homomorphisms of the general linear group. Aequationes Math.4 (1970), 99–102.

    Article  Google Scholar 

  4. Heuvers, K. J., Cummings, L. J. andBhaskara Rao, K. P. S.,A characterization of the permanent function by the Binet—Cauchy Theorem. Linear Algebra Appl.101 (1988), 49–72.

    Article  Google Scholar 

  5. Kurepa, S.,On a characterization of the determinant. Glas. Mat.-Fiz. Astr.14 (1959), 97–113.

    Google Scholar 

  6. Heuvers K. J. andMoak, D. S.,The solution of the Binet—Cauchy functional equation for square matrices. To appear in Discrete Math.

  7. Marcus, M.,Finite Dimensional Multilinear Algebra. Part I, Marcel Dekker, New York, 1972.

    Google Scholar 

  8. Minc, H.,Permanents. Addison-Wesley, Reading, Mass., 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuvers, K.J., Moak, D.S. The Binet-Pexider functional equation for rectangular matrices. Aeq. Math. 40, 136–146 (1990). https://doi.org/10.1007/BF02112290

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02112290

AMS (1980) subject classification

Navigation