Skip to main content
Log in

Control of mitochondrial and cellular respiration by oxygen

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Control and regulation of mitochondrial and cellular respiration by oxygen is discussed with three aims: (1) A review of intracellular oxygen levels and gradients, particularly in heart, emphasizes the dominance of extracellular oxygen gradients. Intracellular oxygen pressure,\(p_{O_2 } \), is low, typically one to two orders of magnitude below incubation conditions used routinely for the study of respiratory control in isolated mitochondria. The\(p_{O_2 } \) range of respiratory control by oxygen overlaps with cellular oxygen profiles, indicating the significance of\(p_{O_2 } \) in actual metabolic regulation. (2) A methodologically detailed discussion of high-resolution respirometry is necessary for the controversial topic of respiratory control by oxygen, since the risk of methodological artefact is closely connected with far-reaching theoretical implications. Instrumental and analytical errors may mask effects of energetic state and partially explain the divergent views on the regulatory role of intracellular\(p_{O_2 } \). Oxygen pressure for half-maximum respiration,p 50, in isolated mitochondria at state 4 was 0.025 kPa (0.2 Torr; 0.3 ΜM O2), whereasp 50 in endothelial cells was 0.06–0.08 kPa (0.5 Torr). (3) A model derived from the thermodynamics of irreversible processes was developed which quantitatively accounts for near-hyperbolic flux/\(p_{O_2 } \) relations in isolated mitochondria. The apparentp 50 is a function of redox potential and protonmotive force. The protonmotive force collapses after uncoupling and consequently causes a decrease inp 50. Whereas it is becoming accepted that flux control is shared by several enzymes, insufficient attention is paid to the notion of complementary kinetic and thermodynamic flux control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, B. S., Yee Aw, T., and Jones, D. P. (1987).Am. J. Physiol. 252, C349-C355.

    PubMed  Google Scholar 

  • Arthur, P. G., Hogan, M. C., Bebout, D. E., Wagner, P. D., and Hochachka, P. W. (1992).J. Appl. Physiol. 73, 737–742.

    PubMed  Google Scholar 

  • Babcock, G. T., and Wickström, M. (1992).Nature 356, 301–309.

    PubMed  Google Scholar 

  • Beavis, A. D. (1986).J. Biol. Chem. 262, 6165–6173.

    Google Scholar 

  • Brand, M. D., Chien, L.-F, and Diolez, P. H. (1994). InWhat is Controlling Life? (Gnaiger, E., Gellerich, F. N., and Wyss, M., eds.),Modern Trends in BioThermoKinetics, Vol. 3, Innsbruck University Press, Innsbruck, pp. 125–128.

    Google Scholar 

  • Brown, G. C., and Cooper, C. E. (1994).FEBS Lett. 356, 295–298.

    PubMed  Google Scholar 

  • Chance, B. (1965).J. Gen. Physiol. 49, 163–188.

    PubMed  Google Scholar 

  • Chance, B., Leigh, J. S., Clark, B. J., Maris, J., Kent, J., Nioka, S., and Smith, D. (1985).Proc. Natl. Adad. Sci. USA 82, 8384–8388.

    Google Scholar 

  • Chinet, A. E., and Mejsnar, J. (1989).J. Appl. Physiol. 66, 253–260.

    PubMed  Google Scholar 

  • Cole, R. C., Sukanek, P. C., Wittenberg, J. B., and Wittenberg, B. A. (1982).J. Appl. Physiol. 53, 1116–1124.

    PubMed  Google Scholar 

  • Connett, R. J., Gayeski, T. E. J., and Honig, C. R. (1985). InOxygen Transport to Tissue, Vol. VII (Kreuzer, F., Cain, S. M., Turek, Z., and Goldstick, T. K., eds.), Plenum Press, New York, pp. 291–300.

    Google Scholar 

  • Costa, L. E., Reynafarje, B., and Lehninger, A. L. (1984).J. Biol. Chem. 259, 4802–4811.

    PubMed  Google Scholar 

  • Degn, H., and Wohlrab, H. (1971).Biochim. Biophys. Acta 245, 347–355.

    PubMed  Google Scholar 

  • Dionne, K. E. (1990).J. Biol. Chem. 265, 15400–15402.

    PubMed  Google Scholar 

  • Einarsdóttir, ó. (1995).Biochim. Biophys. Acta 1229, 129–147.

    PubMed  Google Scholar 

  • Ferreira, J. (1992).Eur. J. Biochem. 207, 857–866.

    PubMed  Google Scholar 

  • Froncisz, W., Lai, C.-S., and Hyde, J. S. (1985).Proc. Natl. Acad. Sci. USA 82, 411–415.

    PubMed  Google Scholar 

  • Gayeski, T. E. J., and Honig, C. R. (1986).Am. J. Physiol. 251, H789-H799.

    PubMed  Google Scholar 

  • Gayeski, T. E. J., and Honig, C. R. (1991).Am. J. Physiol. 260, H522-H531.

    PubMed  Google Scholar 

  • Gnaiger, E. (1983). InPolarographic Oxygen Sensors. Aquatic and Physiological Applications (Gnaiger, E., and Forstner, H., eds.), Springer, Berlin, Heidelberg, New York, pp. 134–166.

    Google Scholar 

  • Gnaiger, E. (1989). InEnergy Transformations in Cells and Organisms (Wieser, W., and Gnaiger, E., eds.), Thieme, Stuttgart, pp. 6–17.

    Google Scholar 

  • Gnaiger, E. (1993a). InThe Vertebrate Gas Transport Cascade: Adaptations to Environment and Mode of Life (Bicudo, J.E.P.W., ed.), CRC Press, Boca Raton, Ann Arbor, London, Tokyo, pp. 358–370.

    Google Scholar 

  • Gnaiger, E. (1993b).Pure Appl. Chem. 65, 1983–2002.

    Google Scholar 

  • Gnaiger, E. (1993c). InSurviving Hypoxia: Mechanisms of Control and Adaptation (Hochachka, P. W., Lutz, P. L., Sick, T., Rosenthal, M., and Van den Thillart, G., eds.), CRC Press, Boca Raton, Ann Arbor, London, Tokyo, pp. 77–109.

    Google Scholar 

  • Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., van der Meer, R., and Tager, J. M. (1982).J. Biol. Chem. 257, 2754–2757.

    PubMed  Google Scholar 

  • Groen, B. H., Berden, J. A., and Van Dam, K. (1990).Biochim. Biophys. Acta 1019, 122–127.

    Google Scholar 

  • Hale, J. M. (1983). InPolarographic Oxygen Sensors, Aquatic and Physiological Applications. (Gnaiger, E., and Forstner, H., eds.), Springer, Berlin, Heidelberg, New York, pp. 3–17.

    Google Scholar 

  • Haller, T., Ortner, M., and Gnaiger, E. (1994).Anal. Biochem. 218, 338–342.

    PubMed  Google Scholar 

  • Jöbsis, F. F. (1972).Fed. Proc. 5, 1404–1413.

    Google Scholar 

  • Jones, D. P. (1986).Am. J. Physiol. 250, C663-C675.

    PubMed  Google Scholar 

  • Jones, D. P., and Kennedy, F. G. (1982).Am. J. Physiol. 243, C247-C253.

    PubMed  Google Scholar 

  • Jones, D. P., and Mason, H. S. (1978).J. Biol. Chem. 253, 4874–4880.

    PubMed  Google Scholar 

  • Kadenbach, B. (1986).J. Bioenerg. Biomembr. 18, 39–54.

    PubMed  Google Scholar 

  • Katchalsky, A., and Curran, P. F. (1965).Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Kennedy, F. G., and Jones, D. P. (1986).Am. J. Physiol. 250, C374-C383.

    PubMed  Google Scholar 

  • Kreutzer, U., and Jue, T. (1995).Am. J. Physiol. 268, H1675-H1681.

    PubMed  Google Scholar 

  • Luvisetto, S., Canton, M., Schmehl, I., and Azzone, G. F. (1994). InWhat is Controlling Life? (Gnaiger, E., Gellerich, F. N., and Wyss, M., eds.).Modern Trends in BioThermoKinetics, Vol. 3, Innsbruck University Press, Innsbruck, pp. 122–124.

    Google Scholar 

  • Malmström, B. G. (1993).Acc. Chem. Res. 26, 332–338.

    Google Scholar 

  • Méndez, G., and Gnaiger, E. (1994). InWhat is Controlling Life? (Gnaiger, E., Gellerich, F. N., and Wyss, M., eds.),Modern Trends in BioThermoKinetics, Vol. 3, Innsbruck University Press, Innsbruck, pp. 191–194.

    Google Scholar 

  • Mertens, S., Noll, T., Spahr, R., Krutzfeldt, A., and Piper, H. M. (1990).Am. J. Physiol. 258, H689-H694.

    PubMed  Google Scholar 

  • Nicholls, D. G., and Ferguson, S. J. (1992).Bioenergetics 2, Academic Press, London.

    Google Scholar 

  • Nicholls, P. (1993). InModern Trends in BioThermoKinetics (Schuster, S., Rigoulet, M., Ouhabi, R., and Mazat, J. P., eds.), Plenum Press, New York, London, pp. 11–16.

    Google Scholar 

  • Petersen, L. C., Nicholls, P., and Degn, H. (1974).Biochem. J. 142, 247–252.

    PubMed  Google Scholar 

  • Pietrobon, D., Zoratti, M., Azzone, G. F., Stucki, J. W., and Walz, D. (1982).Eur. J. Biochem. 127, 483–494.

    PubMed  Google Scholar 

  • Reynafarje, B., Costa, L. E., and Lehninger, A. L. (1985).Anal. Biochem. 145, 406–418.

    PubMed  Google Scholar 

  • Robiolio, M., Rumsey, W. L., and Wilson, D. F. (1989).Am. J. Physiol. 256, C1207-C1213.

    PubMed  Google Scholar 

  • Rumsey, W. L., Schlosser, C., Nuutinen, E. M., Robiolio, M., Wilson, D. F. (1990).J. Biol. Chem. 265, 15392–15399.

    PubMed  Google Scholar 

  • Schindler, F. J. (1967). InMethods in Enzymology, Vol. 10 (Estabrook, R., and Pullman, M. E., eds.), pp. 629–634.

  • Schumacker, P. T., Chandel, N., and Agusti, A. G. N. (1993).Am. J. Physiol. 265, L395-L402.

    PubMed  Google Scholar 

  • Sugano, T., Oshino, N., and Chance, B. (1974).Biochim. Biophys. Acta 347, 340–358.

    PubMed  Google Scholar 

  • Starlinger, H., and Luebbers, D. W. (1972).Pfluegers Arch. 337, 19–28.

    Google Scholar 

  • Steinlechner, R., Eberl, T., Margreiter, R., and Gnaiger, E. (1994). InWhat is Controlling Life? (Gnaiger, E., Gellerich, F. N., and Wyss, M., eds.),Modern Trends in BioThermoKinetics, Vol. 3, Innsbruck University Press, Innsbruck, pp. 283–287.

    Google Scholar 

  • Tamura, M., Hazeki, O., Nioka, S., and Chance, B. (1989).Annu. Rev. Physiol. 51, 813–834.

    PubMed  Google Scholar 

  • Trumpower, B., L., and Gennis, R. B. (1995).Annu. Rev. Biochem. 63, 675–716.

    Google Scholar 

  • Weibel, E. R. (1984).The Pathway for Oxygen. Structure and Function in the Mammalian Respiratory System, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Westerhoff, H. V., and Van Dam, K. (1987).Thermodynamics and Control of Free-Energy transduction, Elsevier, Amsterdam.

    Google Scholar 

  • Wilson, D. F., Erecińska, M., Drown, C., and Silver, I. A. (1979a).Arch. Biochem. Biophys. 195, 485–493.

    PubMed  Google Scholar 

  • Wilson, D. F., Owen, C. S., and Erecińska, M. (1979b).Arch. Biochem. Biophys. 195, 494–504.

    PubMed  Google Scholar 

  • Wilson, D. F., Rumsey, W. L., Green, T. J., and Vanderkooi, J. (1988).J. Biol. Chem. 263, 2712–2718.

    PubMed  Google Scholar 

  • Wittenberg, B. A., and Wittenberg, J. B. (1985).J. Biol. Chem. 260, 6548–6554.

    PubMed  Google Scholar 

  • Wittenberg, B. A., and Wittenberg, J. B. (1989).Annu. Rev. Physiol. 51, 857–878.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnaiger, E., Steinlechner-Maran, R., Méndez, G. et al. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27, 583–596 (1995). https://doi.org/10.1007/BF02111656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02111656

Key words

Navigation