Skip to main content
Log in

Prebiotic synthesis of histidine

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The prebiotic formation of histidine (His) has been accomplished experimentally by the reacton of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which has not been synthesized prebiotically until now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames BN (1957) The biosynthesis of histidine: D-erythro-imidazole-glycerol phosphate dehydrase. J Biol Chem 228:131–141

    PubMed  Google Scholar 

  • Ames BN, Mitchell HK (1952) Paper chromatography of imidazoles. J Am Chem Soc 74:252–253

    Article  Google Scholar 

  • Arrhenius G (1987) The first 800 million years: environmental models for early Earth. Earth, Moon, and Planets 37:187–199

    Google Scholar 

  • Bahadur K (1954) Photosynthesis of amino acids from paraformaldehyde and potassium nitrate. Nature 173:1141

    Google Scholar 

  • Bahadur K, Srivastava RB (1961) The effect of catalysts and period of illumination on the photosynthesis of amino acids in a mixture of paraformaldehyde and potassium nitrate. J Gen Chem USSR 31(9):2813–2815

    Google Scholar 

  • Bahadur K, Ranganayaki S, Santamaria L (1958) Photosynthesis of amino acids from paraformaldehyde involving the fixation of nitrogen in the presence of colloidal molybdenum oxide as catalyst. Nature 182:1168

    PubMed  Google Scholar 

  • Chang S, Des Marais D, Mack R, Miller SL, Strathearn G (1983) Prebiotic organic syntheses and the origin of life. In: Schopf JW (ed) Earth's earliest biosphere. Princeton University Press, Princeton, pp 53–92

    Google Scholar 

  • Cronin J, Pizzarello S (1983) Amino acids in meteorites. Adv Space Res 3(9):5–18

    Article  PubMed  Google Scholar 

  • Cronin J, Pizzarello S, Cruikshank D (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. University of Arizona Press, Tucson, pp 819–857

    Google Scholar 

  • Draganic ZD, Draganic IC, Borovicanin M (1976) Radiation chemistry of aqueous solution of hydrogen cyanide in the megarad dose range. Radiat Res 66:42–53

    PubMed  Google Scholar 

  • Draganic ZD, Niketic V, Jovanovic S, Draganic IG (1980) The radiolysis of aqueous ammonium cyanide: compounds of interest to chemical evolution studies. J Mol Evol 15:239–260

    Article  PubMed  Google Scholar 

  • Ferris JP, Kuder JE (1970) Chemical evolution III. The photochemical conversion of enaminonitriles to imidazoles. J Am Chem Soc 92:2527–2533

    Article  Google Scholar 

  • Ferris JP, Orgel LE (1966) An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J Am Chem Soc 88:1074

    Article  Google Scholar 

  • Grimmett MR (1965) Formation of heterocyclic compounds from carbohydrates and ammonia. Rev Pure Appl Chem 15:101–108

    Google Scholar 

  • Grimmett MR (1970) Advances in imidazole chemistry. Adv Heterocyclic Chem 12:103–183

    Google Scholar 

  • Hamilton PB (1963) Ion exchange chromatography of amino acids. Nature 35:2055–2064

    Google Scholar 

  • Hamilton PB (1965) Amino acids on hands. Nature 205:284–285

    Google Scholar 

  • Harsch G, Bauer H, Voelter W (1984) Kinetics, catalysis, and mechanism of the secondary reaction in the final phase of the formose reaction. Liebigs Ann Chem 4:623–635

    Google Scholar 

  • Hayatsu R, Studier M, Anders E (1971) Origin of organic matter in early solar system—IV, amino acids: confirmation of catalytic synthesis by mass spectrometry. Geochim Cosmochim Acta 35:939–951

    Article  Google Scholar 

  • Heinrikson RL, Meredith SC (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem 136:65–74

    Article  PubMed  Google Scholar 

  • Kaplan IR, Degens ET, Reufer JH (1963) Organic compounds in stony meteorites. Geochim. Cosmochim Acta 27:805–834

    Article  Google Scholar 

  • Kissel J, Krueger FR (1987) The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326:755–760

    Article  Google Scholar 

  • Kolomiychenko (1965) Photochemical synthesis of amino acids. Fed Proc Transl Suppl 24, pt. 2.1, T199–202

    Google Scholar 

  • Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature 288:923–926

    Article  Google Scholar 

  • Kvenvolden K, Lawless J, Ponnamperuma C (1971) Nonprotein amino acids in the Murchison meteorite. Proc Natl Acad Sci USA 68:486–490

    Google Scholar 

  • Labadie M, Jensen R, Neuzil E (1968) Recherches sur l'evolution prebiologique. Biochim Biophys Acta 165:525–533

    Google Scholar 

  • Lavrentiev GA, Stringunkova TF, Egorov IA (1984) Abiological synthesis of amino acids, purines and pyrimidines under conditions simulating the volcanic ash-gas cloud. Origins Life 14:205–212

    Article  Google Scholar 

  • Lazcano A, Oró J, Miller SL (1983) Primitive Earth environments: organic syntheses and the origin and early evolution of life. Precambrian Res 20:259–282

    Article  Google Scholar 

  • Matthews CN, Moser RE (1966) Prebiological protein synthesis. Proc Natl Acad Sci USA 56:1087

    PubMed  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    PubMed  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primtive earth conditions. J Am Chem Soc 77:2351–2361

    Article  Google Scholar 

  • Miller SL (1982) Prebiotic synthesis of organic compounds. In: Holland HD, Schidlowski M (ed) Mineral deposits and the evolution of the biosphere. Springer-Verlag, New York, pp 155–176

    Google Scholar 

  • Miller SL, Van Trump JE (1981) The Strecker synthesis in the primitive ocean. In: Wolman Y (ed) Origins of life. Reidel, Dordrecht, Holland, pp 135–141

    Google Scholar 

  • Mizutani H, Mikuni H, Takahasi M (1975) Studies on the photochemical reaction of HCN and its polymer products relating to primary chemical evolution. Origins Life 6:513–525

    Article  Google Scholar 

  • Moser RE, Clagget AR, Mathews CN (1968a) Peptide formation from diaminomaleonitrile. Tetrahedron Lett 13:1599–1603

    Article  PubMed  Google Scholar 

  • Moser RE, Clagget AR, Mathews CN (1968b) Peptide formation from aminomalononitrile (HCN trimer). Tetrahedron Lett 13:1605–1608

    Article  PubMed  Google Scholar 

  • Nakamura K, Koda T (1982) Irradiation of aqueous solution of thiocyanate by radiation emitted from10B(n,α)7Li reaction. J Nucl Sci Technol 19:422–424

    Google Scholar 

  • Nakaparksin S, Gil-Av E, Oró J (1970a) Study of the racemization of some neutral alpha-amino acids in acid solution using gas chromatographic techniques. Anal Biochem 33:374–382

    Article  PubMed  Google Scholar 

  • Nakaparksin S, Birrell P, Gil-Av E, Oró J (1970b) Gas chromatography with optically active stationary phases: resolution of amino acids. J Chromatogr Sci 8:177–182

    Google Scholar 

  • Ochiai I, Hatanaka H, Yentilla M, Yanagawa H, Ogawa Y, Egami F (1978) Experimental approach to the chemical evolution the primeval sea: I. Formation of amino acids and amino acid polymers in modified sea mediums. In: Noda H (ed) Origin of life. Center for Academic Publications, Japan/Japan Scientific Societies, Tokyo, pp 135–139

    Google Scholar 

  • Oró J (1961) Comets and the formation of biochemical compounds on the primitive Earth. Nature 190:389–390

    Google Scholar 

  • Oró J, Kimball AP (1962) Synthesis of purines under possible primitive Earth conditions II. Purine intermediates from hydrogen cyanide. Arch Biochem Biophys 96:293–313

    Article  PubMed  Google Scholar 

  • Oró J, Mills T (1989) Chemical evolution of primitive solar system bodies. Adv Space Res 9:(2)105-(2)120

    Google Scholar 

  • Oró J, Skewes HB (1965) Free amino acids on human fingers: the question of contamination in microanalysis. Nature 207:1042–1045

    PubMed  Google Scholar 

  • Oró J, Tornabene T (1965) Bacterial contamination of some carbonaceous chondrites. Science 150:1046–1048

    Google Scholar 

  • Oró J, Gibert J, Lichtenstein H, Wikstrom S, Flory DA (1971a) Amino acids, aliphatic and aromatic hydrocarbons in the Murchison meteorite. Nature 230:105–106

    Article  PubMed  Google Scholar 

  • Oró J, Nakaparksin S, Lichtenstein H, Gil-Av E (1971b) Configuration of amino acids in carbonaceous chondrites and a Precambrian chert. Nature 230:107–108

    Article  PubMed  Google Scholar 

  • Oró J, Basile B, Cortes S, Shen C, Yamrom T (1984) The prebiotic synthesis and catalytic role of imidazoles and other condensing agents. Origins Life 14:237–242

    Article  Google Scholar 

  • Oró J, Miller SA, Lazcano A (1990) The origin and early evolution of life on Earth. Annu Rev Earth Planet Sci 18:317–356

    Article  PubMed  Google Scholar 

  • Pavlovskaya TE, Telegina TA (1974) Photochemical conversions of lower aldehyde in aqueous solution and fog. Origins Life 5:303–309

    Article  Google Scholar 

  • Shen C, Yang L, Miller SL, Oró j (1987) Prebiotic synthesis of imidazole-4-acetaldehyde and histidine. Origins Life 17:295–305

    Google Scholar 

  • Vdovykin GP (1973) The Mighei meteorite. Space Sci Rev 14:832–879

    Google Scholar 

  • Weber AL, Miller SL (1981) Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 17:273–284

    Article  PubMed  Google Scholar 

  • Yoshino D, Hayatsu R, Anders E (1971) Origins of organic matter in early solar system—III. Amino acids: catalytic synthesis. Geochim Cosmochim Acta 35:927–938

    Article  Google Scholar 

  • Zacharius RM, Talley EA (1962) Elution behavior of naturally occurring ninhydrin-positive compounds during ion exchange chromatography. Anal Chem 34:1551–1556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, C., Yang, L., Miller, S.L. et al. Prebiotic synthesis of histidine. J Mol Evol 31, 167–174 (1990). https://doi.org/10.1007/BF02109492

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02109492

Key words

Navigation