Skip to main content
Log in

Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The complete nucleotide sequences of 5S ribosomal RNAs fromRhodocyclus gelatinosa, Rhodobacter sphaeroides, andPseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains.Rhodobacter sphaeroides is specifically related toParacoccus denitrificans andRc. gelatinosa is related toPs. cepacia.These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found inP. denitrificans are present also in the 5S RNA ofRb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of our obtaining these new sequences is that we are able to clarify the phylogenetic origins of the plant mitochondrion. In particular, we find a close phylogenetic relationship between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely,Rb. sphaeroides, P. denitrificans, andRhodospirillum rubrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almassy R, Dickerson R (1978)Pseudomonas cytochrome c551 at 2.0 Å resolution: enlargement of the cytochrome c family. Proc Natl Acad Sci USA 75:2674–2678

    PubMed  Google Scholar 

  • Andersen J, Andresini W, Delihas N (1982) On the phylogeny ofPhycomyces blakesleeanus—nucleotide sequence of 5S ribosomal RNA. J Biol Chem 257:9114–9118

    PubMed  Google Scholar 

  • Bonen L, Gray MW (1980) Organization and expression of mitochondrial genome of plants I. The genes for wheat mitochondrial ribosomal and transfer RNA: evidence for an unusual arrangement. Nucleic Acids Res 8:319–335

    PubMed  Google Scholar 

  • Brownlee GG, Sanger F, Barrell BG (1968) The sequence of 5S ribosomal ribonucleic acid. J Mol Biol 34:379–412

    PubMed  Google Scholar 

  • Chao S, Sederoff RR, Levings CS III (1983) Partial sequence analysis of the 5S to 18S rRNA gene region of the maize mitochondrial genome. Plant Physiol 71:190–193

    Google Scholar 

  • Delihas N, Andersen J, Singhal RP (1984) Prog Nucleic Acid Res 31:161–190

    PubMed  Google Scholar 

  • Donis-Keller H, Maxam AM, Gilbert W (1977) Mapping adenines, guanines and pyrimidines in RNA. Nucleic Acids Res 4:2527–2538

    PubMed  Google Scholar 

  • England TE, Uhlenbeck OC (1978) 3′-Terminal labeling of RNA with T4 RNA ligase. Nature 275:560–561

    PubMed  Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonnen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    PubMed  Google Scholar 

  • Gibson J, Stackebrandt E, Zablen L, Gupta R, Woese C (1979) A phylogenetic analysis of the purple photosynthetic bacteria. Curr Microbiol 3:59–64

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    PubMed  Google Scholar 

  • Gray MW, Spencer DF (1983) Wheat mitochondrial DNA encodes a eubacteria-like initiator methionine transfer RNA. FEBS Lett 161:323–327

    Google Scholar 

  • Gray MW, Sankoff D, Cedergren RJ (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subumit ribosomal RNA. Nucleic Acids Res 12:5837–5852

    PubMed  Google Scholar 

  • Imhoff JF, Truper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34:340–343

    Google Scholar 

  • John P, Whatley FR (1975)Paracoccus denitrificans and the evolutionary origins of the mitochondria. Nature 254:495–498

    PubMed  Google Scholar 

  • Komiya H, Kawakami M, Takemura S, Kumagai I, Erdmann VA (1983) Terminal heterogeneity and corrections of the nucleotide sequence of 5S rRNA from an extreme thermophile,Thermus thermophilis. Nucleic Acids Res 11:913–916

    PubMed  Google Scholar 

  • Luehrsen KR, Fox GE (1981) Secondary structure of eucaryotic cytoplasmic 5S ribosomal RNA. Proc Natl Acad Sci USA 78: 2150–2154

    PubMed  Google Scholar 

  • MacKay RM, Salgado D, Bonnen L, Stackebrandt E, Doolittle WF (1982) The 5S ribosomal RNAs ofParacoccus denitrificans andProchloron. Nucleic Acids Res 10:2963–2970

    PubMed  Google Scholar 

  • Morgens PH, Grabau EA, Gesteland RF (1984) A novel soybean mitochondrial transcript resulting from a DNA rearrangement involving the 5S rRNA gene. Nucleic Acids Res 12:5665–5684

    PubMed  Google Scholar 

  • Newhouse N, Nicoghosian K, Cedergren RJ (1982) The nucleotide sequence of phenylalanine tRNA and 5S RNA fromRhodospirillum rubrum. Can J Biochem 59:924–932

    Google Scholar 

  • Peattie DA (1979) Direct chemical method of sequencing RNA. Proc Natl Acad Sci USA 76:1760–1764

    PubMed  Google Scholar 

  • Silberklang M, Prochiantz A, Haenni AL, Rajbhandary VL (1977) Studies on the sequence of the 3′-terminal region of turnipyellow mosaic virus RNA. Eur J Biochem 72:465–478

    PubMed  Google Scholar 

  • Spencer DF, Bonen L, Gray MW (1981) Primary sequence of wheat mitochondrial 5S ribosomal ribonucleic acid: functional and evolutionary implications. Biochemistry 20:4022–4029

    PubMed  Google Scholar 

  • Stackebrandt E, Woese CR (1984) The phylogeny of prokaryotes. Microbiol Sci 1:117–122

    PubMed  Google Scholar 

  • Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:407–411

    Google Scholar 

  • Stern DB, Dyer TA, Lonsdale DM (1982) Organization of the mitochondrial ribosomal RNA genes of maize. Nucleic Acids Res 10:3333–3340

    PubMed  Google Scholar 

  • Uchida T, Bonen L, Schaup HW, Lewis BJ, Zablen L, Woese CR (1974) The use of ribonuclease U2 in RNA sequence determination. Some corrections in the catalog of oligomers produced by ribonuclease T1 digestion ofEscherichia coli 16S ribosomal RNA. J Mol Evol 3:63–77

    PubMed  Google Scholar 

  • Whatley F (1981) The establishment of mitochondria:Paracoccus andRhodopseudomonas. Ann NY Acad Sci 361:330–339

    PubMed  Google Scholar 

  • Woese CR, Luehrsen K, Pribula CD, Fox GE (1976) Sequence characterization of 5S ribosomal RNA from eight Gram positive prokaryotes. J Mol Evol 8:143–153

    PubMed  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984a) The phylogeny of purple bacteria: the alpha subdivison. Syst Appl Microbiol 5:315–326

    PubMed  Google Scholar 

  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H, Stackebrandt E (1984b) The phylogeny of purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336

    Google Scholar 

  • Wolters J, Erdmann VA (1984) Comparative analysis of small ribosomal RNAs with respect to the evolution of plastids and mitochondria. ISE News Lett 1:1–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villanueva, E., Luehrsen, K.R., Gibson, J. et al. Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences. J Mol Evol 22, 46–52 (1985). https://doi.org/10.1007/BF02105804

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02105804

Key words

Navigation