Skip to main content
Log in

Prebiotic synthesis in atmospheres containing CH4, CO, and CO2

II. Hydrogen cyanide, formaldehyde and ammonia

  • Original Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The electric discharge synthesis of HCN, H2CO, NH3 and urea has been investigated using various mixtures of CH4, CO, CO2, N2, NH3, H2O, and H2. HCN and H2CO were each synthesized in yields as high as 10% from CH4 as a carbon source. Similar yields were obtained from CO when H2/CO>1.0 and from CO2 when H2/CO2>2.0 At H2/CO2<1.0 the yields fall off drastically. Good yields of NH3 (0.7 to 5%) and fair yields of urea (0.02 to 0.63%) based on nitrogen were also obtained. The directly sythesized NH3 together with the NH3 obtained from the hydrolysis of HCN, nitriles and urea could have been a major source of ammonia in the atmosphere and oceans of the primitive earth. These results show that prebiotic syntheses from HCN and H2CO to give products such as purines and sugars and some amino acids could have occurred in primitive atmospheres containing CO and CO2 provided the H2/CO and H2/CO2 ratios were greater than about 1.0. Methane containing atmospheres give comparable quantities of HCN and H2CO, and are superior in the synthesis of amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson PH (1965) Abiogenic synthesis in the Martian environment. Proc Natl Acad Sci USA 54:1490–1494

    Google Scholar 

  • Abelson PH, Hoering TC (1965–66) Irradiation of mixtures of CO, N2 and H2. Carnegie Inst Wash Yearbook 65:360–362

    Google Scholar 

  • Annino JS, Giese RW (1976) Clinical chemistry: principles and procedures. 4th Ed, Little, Brown, Boston

    Google Scholar 

  • Bada JL, Miller SL (1968) Ammonium ion concentration in the primitive ocean. Science 159:423–425

    Google Scholar 

  • Bar-Nun A, Hartman H (1978) Synthesis of organic compounds from carbon monoxide and water by UV photolysis. Orig Life 9:93–101

    Google Scholar 

  • Blaustein BD (ed) (1965) Chemical reactions in electrical discharges. Adv Chem Ser #80, American Chemical Society Publications, Washington, D.C.

    Google Scholar 

  • Briner E, Baerfuss A (1919) Sur la fixation de l'azote sous forme d'acide cyanhydrique au moyen de l'arc électrique. Helv Chim Acta 2:663–666

    Article  Google Scholar 

  • Briner E, Desbaillets J, Paillard H (1938) Recherches sur l'action chimique des décharges électriques. XII. Production de l'acide cyanhydrique par l'arc électrique à différentes fréquences. Hevl Chim Acta 21:115–133

    Article  Google Scholar 

  • Briner E, Hoefer H (1940) Recherches sur l'action chimique des décharges électriques. XIX. Production de l'acide cyanhydrique et de l'ammoniac par l'arc électrique en haute et basse fréquences jaillissant dans les mélanges azote-oxyde de carbone-hydrogène à la pression ordinaire et en dépression. Helv Chim Acta 23:826–831

    Article  Google Scholar 

  • Briner E, Hoefer H (1941) Recherches sur l'action chimique des décharges électriques. XXV. Sur la production de l'acide cyanhydrique et de l'ammoniac au moyen de l'arc à haute fréquence jaillissant dans un gaz de distillation de la houille. Helv Chim Acta 24:1006–1010

    Article  Google Scholar 

  • Butlerov A (1861) Formation synthetique d'une substance sucree. Compt Rend Acad Sci 53:145–147

    Google Scholar 

  • Chameides WL, Walker JCG (1981) Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres. Orig Life 11:291–302

    Article  PubMed  Google Scholar 

  • Conway EJ (1963) Microdiffusion analysis and volumetric error. Chemical Publishing Co, New York

    Google Scholar 

  • Ferris JP, Nicodem DE (1972) Ammonia photolysis and the role of ammonia in chemical evolution. Nature 238:268–269

    PubMed  Google Scholar 

  • Folsome CE, Brittain A, Smith A, Chang S (1981) Hydrazines and carbohydrazides produced from oxidized carbon in earth's primitive environment. Nature 294:64–65

    Article  Google Scholar 

  • Frost AA, Pearson RG (1961) Kinetics and mechanism. 2nd Ed, John Wiley, New York, pp 307–316

    Google Scholar 

  • Gabel NW, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature 216:453–455

    PubMed  Google Scholar 

  • Hart MH (1978) The evolution of the atmosphere of the earth. Icarus 33:23–39

    Article  Google Scholar 

  • Henderson-Sellers A, Schwartz AW (1980) Chemical evolution and ammonia in the early earth's atmosphere. Nature 287:526–528

    Article  Google Scholar 

  • Henderson-Sellers A, Cogley JG (1982) The earth's early hydrosphere. Nature 298:832–835

    Article  Google Scholar 

  • Kasting JF (1982) Stability of ammonia in the primitive terrestrial atmosphere. J Geophys Res 87:3091–3098

    Google Scholar 

  • Kemp IA, Kohnstam G (1956) The decomposition of inorganic cyanates in water. J Chem Soc 1956:900–911

    Article  Google Scholar 

  • Koenig A, Weinig R (1927) The formation of formaldehyde from water gas in the electric glow discharge. Chem Abs 21:3834

    Google Scholar 

  • Kuhn WR, Atreya SK (1979) Ammonia photolysis and the greenhouse effect in the primoridal atmosphere of the earth. Icarus 37:207–213

    Article  Google Scholar 

  • McTaggart FK (1964) Reactions of carbon monoxide in a highfrequency discharge. Aust J Chem 17:1182–1187

    Google Scholar 

  • Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 23:480–489

    Article  PubMed  Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on the earth. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Miller SL, Van Trump JE (1981) The Strecker synthesis in the primitive ocean. In: Wolman Y (ed) Origin of Life. D. Reidel, Dordrecht, Holland, pp 135–141

    Google Scholar 

  • Mourey D, Raulin F, Toupance G (1981) Formation of prebiotic precursors from model reducing atmospheres: role of hydrogen escape. In: Wolman Y (ed) Origin of Life. D. Reidel, Dordrecht, Holland, pp 73–82

    Google Scholar 

  • Pinto JP, Gladstone GR, Yung YL (1980) Photochemical production of formaldehyde in earth's primitive atmosphere. Science 210:183–185

    Google Scholar 

  • Reid C, Orgel LE (1967) Synthesis of sugars in potentially prebiotic conditions. Nature 216:455

    PubMed  Google Scholar 

  • Schlesinger G, Miller SL (1973) Equilibrium and kinetics of glyconitrile formation in aqueous solution. J Am Chem Soc 95:3729–3735

    Article  Google Scholar 

  • Schlesinger G, Miller SL (1983) Prebiotic syntheses in atmospheres containing CH4, CO, and CO2: I. Amino acids. J Mol Evol: 19:383–390

    PubMed  Google Scholar 

  • Schonland BFJ (1953) Atmospheric electricity. Methuen, London, pp 42–63

    Google Scholar 

  • Schrauzer GN, Guth TD (1977) Photolysis of water and photoreduction of nitrogen on titanium dixode. J Am Chem Soc 99:7189–7193

    Article  Google Scholar 

  • Schrauzer GN, Guth TD, Palmer MR, Salehi J (1979) Nitrogen reducing solar cells. In: Mautala RR, King RB, Kutal C (eds) Solar energy: chemical conversion and storage. Humana Press, Clifton New Jersey, pp 261–269

    Google Scholar 

  • Thornton JD, Sergio R (1967) Synthesis of formaldehyde from methane in electrical discharges. Nature 213:590–591

    Google Scholar 

  • Toupance G, Raulin F, Buvet R (1975) Formation of prebiochemical compounds in models of the primitive earth's atmosphere. I: CH4−NH3 and CH4−N2 atmospheres. Orig Life 6:83–90

    Article  PubMed  Google Scholar 

  • Van Trump JE, Miller SL (1973) Carbon monoxide on the primitive earth. Earth Planetary Sci Lett 20:145–150

    Article  Google Scholar 

  • Voet AB, Schwartz AW (1982) Uracil synthesisvia HCN oligomerization. Orig Life 12:45–49

    Article  PubMed  Google Scholar 

  • West PW, Sen B (1956) Spectrophotometric determination of traces of formaldehyde. Z Anal Chem 153:177–183

    Article  Google Scholar 

  • Wright AN, Winkler CA (1968) Active nitrogen. Academic Press, New York

    Google Scholar 

  • Yamagata Y, Mohri T, Yamakoshi M, Inomata K (1981) Constant AMP synthesis in aqueous solution by electric discharges. Orig Life 11:233–235

    Article  PubMed  Google Scholar 

  • Yamagata Y, Mohri T (1982) Formation of cyanate and carbamyl phosphate by electric discharges of model primitve gas. Orig Life 12:41–44

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlesinger, G., Miller, S.L. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2 . J Mol Evol 19, 383–390 (1983). https://doi.org/10.1007/BF02101643

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101643

Key words

Navigation