Skip to main content
Log in

Characterization of the two nonallelic genes encoding mouse preproinsulin

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We have cloned and sequenced the two mouse preproinsulin genes. The deduced amino acid sequences of the mature mouse insulins are identical to the published protein sequences. However, the nucleotide sequence indicates that the mouse I C-peptide has a deletion of two amino acids compared with the mouse II C-peptide. We used an S1 nuclease assay to confirm the presence of the deletion and to measure the ratio of transcripts from gene I to transcripts from gene II. The mouse preproinsulin I gene, like the rat gene I, is missing the second intervening sequence that normally interrupts the C-peptide region in other insulin genes. Comparison of the 5′ flanking sequences of the mouse and rat genes II indicates that they are homologous for at least 1000 base pairs. The preproinsulin I genes also share homology in their 5′ flanking DNAs; however, their homology to the preproinsulin II genes extends for only about 500 base pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell GI, pescador RS (1984) Sequence of a cDNA encoding Syrian hamster preproinsulin. Diabetes 33:297–300

    PubMed  Google Scholar 

  • Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM (1980) Sequence of the human insulin gene. Nature 284:26–32

    PubMed  Google Scholar 

  • Bell GI, Karam JH, Rutter WJ (1981) Polymorphic DNA region adjacent to 5′ end of the human insulin gene. Proc Natl Acad Sci USA 78:5759–5763

    PubMed  Google Scholar 

  • Benton WD, Davis RW (1977) Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science 196:180–182

    PubMed  Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732

    PubMed  Google Scholar 

  • Bunzli HF, Humbel RE (1972) Isolation and partial structural analysis of insulin from mouse (Mus musculus) and spiny mouse (Acomys cahirinus). Hoppe Seylers Z Physiol Chem 353:444–450

    PubMed  Google Scholar 

  • Casey J, Davidson N (1977) Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide. Nucleic Acids Res 4:1539–1552

    PubMed  Google Scholar 

  • Chan SJ, Keim P, Steiner DF (1976) Cell-free synthesis of rat proinsulins: characterization and partial amino acid sequence determination. Proc Natl Acad Sci USA 73:1964–1968

    PubMed  Google Scholar 

  • Chan SJ, Emdin SO, Kwok SCM, Kramer JM, Falkmer S, Steiner DF (1981) Messenger RNA sequence and primary structure of preproinsulin in a primitive vertebrate. J Biol Chem 256: 595–602

    Google Scholar 

  • Chan SJ, Episkopou V, Zeitlin S, Karathansis SK, MacKrell A, Steiner DF, Efstratiadis A (1984) Guinea pig preproinsulin gene: an evolutionary compromise? Proc Natl Acad Sci USA 81:5046–5050

    PubMed  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5298

    PubMed  Google Scholar 

  • Clark JL, Steiner DF (1969) Insulin biosynthesis in the rat: demonstration of two proinsulins. Biochemistry 62:278–285

    Google Scholar 

  • Cordell B, Bell B, Tischer E, DeNoto FM, Ullrich A, Pictet R, Rutter WJ, Goodman HM (1979) Isolation and characterization of a cloned rat insulin gene. Cell 18:533–543

    PubMed  Google Scholar 

  • Dierks PA, Van Ooyen A, Cochran MD, Dobkin C, Reiser J, Weissman C (1983) Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit β-globin gene in mouse 3T3 cells. Cell 32:695–706

    PubMed  Google Scholar 

  • Dodgson JB, Wells RD (1977) Action of single-strand specific nucleases on model DNA heteroduplexes of defined size and sequence. Biochemistry 16:2374–2379

    PubMed  Google Scholar 

  • Fitzgerald M, Shenk T (1981) The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260

    PubMed  Google Scholar 

  • Glisin V, Crkvenjakov R, Byus C (1974) Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13:2633–2637

    PubMed  Google Scholar 

  • Green MR, Roeder RG (1980) Definition of a novel promoter for the major late adenovirus-associated virus mRNA. Cell 22:231–242

    PubMed  Google Scholar 

  • Hahn V, Winkler J, Rapoport TA, Liebscher DH, Coutelle C, Rosenthal S (1983) Carp preproinsulin cDNA sequence and evolution of insulin genes. Nucleic Acids Res 11:4541–4552

    PubMed  Google Scholar 

  • Hobart PM, Shen L, Crawford R, Pictet R, Rutter WJ (1980) Comparison of the nucleic acid sequence of anglerfish and mammalian insulin mRNA's from cloned cDNA's. Science 210:1360–1363

    PubMed  Google Scholar 

  • Humbel RE, Bosshard HR, Zahn H (1972) Chemistry of insulin. In: Greep RO, Astwood EB, Steiner DF, Freinkel N, Geiger SR (eds) Handbook of physiology, vol I. American Physiological Society, Washington, D.C., pp 111–132

    Google Scholar 

  • Karn J, Brenner S, Barnett L (1983) New bacteriophage lambda vectors with positive selection for cloned inserts. Methods Enzymol 101:3–19

    PubMed  Google Scholar 

  • Kwok SCM, Chan SJ, Steiner DJ (1983) Cloning and nucleotide sequence analysis of the dog insulin gene: Coded amino acid sequence of canine preproinsulin predicts an additional C-peptide fragment. J Biol Chem 258:2357–2363

    PubMed  Google Scholar 

  • Langridge J, Langridge P, Bergquist PL (1980) Extraction of nucleic acids from agarose gels. Anal Biochem 103:204–271

    Google Scholar 

  • Lomedico P, Rosenthal N, Efstratiadis A, Gilbert W, Kolodner R, Tizard R (1979) The structure and evolution of the two non-allelic rat preproinsulin genes. Cell 18:545–558

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Markussen J (1971) Mouse insulins—separation and structures. Int J Protein Res 3:149–155

    PubMed  Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    PubMed  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    PubMed  Google Scholar 

  • Pustell J, Kafatos FC (1982) A convenient and adaptable package of DNA sequence analysis programs for microcomputers. Nucleic Acids Res 10:51–60

    PubMed  Google Scholar 

  • Pustell J, Kafatos FC (1984) A convenient and adaptable package of computer programs for DNA and protein sequence management, analysis and homology determination. Nucleic Acids Res 12:643–655

    PubMed  Google Scholar 

  • Rigby PWJ, Diekman M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nicktranslation with DNA polymerase I. J Mol Biol 113:237–251

    PubMed  Google Scholar 

  • Rimm DL, Horness D, Kucera J, Blattner FR (1980) Construction of coliphage lambda charon vectors with Bam HI cloning sites. Gene 12:301–309

    PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  • Shenk T (1981) Transcriptional control regions: nucleotide sequence requirements for initiation by RNA polymerase II and III. Curr Top Microbiol Immunol 93:25–46

    PubMed  Google Scholar 

  • Smith LF (1966) Species variation in amino acids sequence of insulin. Am J Med 40:662–666

    PubMed  Google Scholar 

  • Soares MB, Schon E, Henderson A, Karathansis SK, Cate R, Zeitlin S, Chirgwin J, Efstratiadis A (1986) RNA-mediated gene duplication: The rat preproinsulin 1 gene is a functional retroposon. Mol Cell Biol 5:2090–2103

    Google Scholar 

  • Sorokin AV, Petrenko OI, Kausan UM, Kozlov YI, Debabov VG, Zlochevskij ML (1982) Nucleotide sequence analysis of the cloned salmon preproinsulin cDNA. Gene 20:367–376

    PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Steiner DF, Chan SJ, Kwok SCM, Welsh JM (1985) Structure and evolution of the insulin gene. Annu Rev Genet 19:463–484

    PubMed  Google Scholar 

  • Sternberg N, Tiemeier D, Enquist L (1977) In vitro packaging of a Dam vector containing Eco RI DNA fragments ofEscherichia coli and phage P1. Gene 1:255–280

    PubMed  Google Scholar 

  • Ullrich A, Shine J, Chirgwin J, Pictet R, Tischer E, Rutter WJ, Goodman HM (1977) Rat insulin genes: construction of plasmids containing the coding sequences. Science 196:1313–1319

    PubMed  Google Scholar 

  • Viera J, Messing J (1982) The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing. Gene 19:259–268

    PubMed  Google Scholar 

  • Villa-Komaroff L, Efstratiadis A, Broome S, Lomedico P, Tizard R, Naber SP, Chick WL, Gilbert W (1978) A bacterial clone synthesizing proinsulin. Proc Natl Acad Sci USA 75:3727–3731

    PubMed  Google Scholar 

  • Vogt VM (1980) Purification and properties of S1 nuclease fromAspergillus. Methods Enzymol 65:248–255

    PubMed  Google Scholar 

  • Watt VM (1985) Sequence and evolution of guinea pig preproinsulin DNA. J Biol Chem 20:10926–10929

    Google Scholar 

  • Wetekam W, Groneberg J, Leineweber M, Wengenmayer F, Winnacker EL (1982) The nucleotide sequence of cDNA coding for preproinsulin from the primateMacaca fascicularis. Gene 19:179–183

    PubMed  Google Scholar 

  • Wickens M, Stephenson P (1984) Role of the conserved AAUAAA sequence: Four AAUAAA point mutants prevent messenger RNA 3′ end formation. Science 226:1045–1051

    PubMed  Google Scholar 

  • Woo SLC (1979) A sensitive and rapid method for recombinant phage screening. Methods Enzymol 68:389–395

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wentworth, B.M., Schaefer, I.M., Villa-Komaroff, L. et al. Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol 23, 305–312 (1986). https://doi.org/10.1007/BF02100639

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100639

Key words

Navigation