Skip to main content
Log in

Magnetoenterography (MENG)

Noninvasive measurement of bioelectric activity in human small intestine

  • Motility, Nerve-Gut Interactions, Hormones, And Receptors
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The basic electrical rhythm (BER) of the gastrointestinal tract creates minute magnetic fields that have been measured in animals using a Superconducting QUantum Interference Device (SQUID) gradiometer. The aim of this study was to measure noninvasively the biomagnetic fields of human stomach and small intestine. Twenty-one human volunteers were studied using a 37-channel SQUID gradiometer positioned over the epigastrium and umbilicus. In one volunteer additional biomagnetic recordings were performed in order to map the spatial variation of the biomagnetic fields. Cyclical waveforms consistent with gastric BER [3.0 ± 0.5 cycles per minute (cpm)] and small intestine BER (10.26 ± 1.74 cpm) were seen in the epigastrium and umbilicus, respectively. The mapping study identified the expected frequency gradient (12.0 cpm in duodenum, 11.3 cpm in jejunum, to 9.7 cpm in ileum) within the small intestine. Noninvasive recordings of human gastric and small intestinal BER can be obtained using a SQUID gradiometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen D: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science 161:784–6, 1968

    PubMed  Google Scholar 

  2. Baule G, McFee R: Detection of the magnetic field of the heart. Am Heart J 65:95–96, 1963

    Google Scholar 

  3. Comani S, Basile M, Casciardi S,et al.: Extracorporeal direct magnetic measurement of gastric activity.In M Hokeet al. (eds). Biomagnetism: Clinical Aspects. Amsterdam, Elsevier Science, 1992:639–642

    Google Scholar 

  4. Wikswo JP Jr, Barach J, Freeman J: Magnetic field of a nerve impulse: First measurements. Science 208(4):53–55, 1980

    PubMed  Google Scholar 

  5. Wikswo JP Jr, Henry WP, Friedman RN: Intraoperative recording of the magnetic field of a human nerve.In S Williamson, M Hoke, G Stroink, M Kotani (eds). Advances in Biomagnetism. New York, Plenum Press, 1990:681–684

    Google Scholar 

  6. Wikswo JP Jr, van Egeraat J: Cellular magnetic fields: Fundamental and applied measurements on nerve axons, peripheral nerve bundles, and skeletal muscle. J Clin Neurophysiol 8(2):170–188, 1991

    PubMed  Google Scholar 

  7. van Egeraat JM, Friedman RN, Wikswo JP Jr: Magnetic field of a single muscle fiber: First measurements and a core conductor model. Biophys J 57:663–667, 1990

    PubMed  Google Scholar 

  8. Staton DJ, Soteriou MC, Friedman RN, Richards WO, Wikswo JP Jr: First magnetic measurements of smooth muscle in vitro using a high-resolution DC-SQUID magnetometer. New frontiers of biomedical engineering—Innovations from nuclear to space technology (Processing of Annual Internal IEEE-EMBS Conference Proceedings), 1991, pp 550–551

  9. Golzarian J, Staton DJ, Wikswo JP Jr, Friedman RN, Richards WO: Diagnosing intestinal ischemia using a noncontact Super-conducting QUantum Interference Device. Am J Surg 167:586–592, 1994

    PubMed  Google Scholar 

  10. Richards WO, Garrard CL, Allos SH, Bradshaw LA, Staton DJ, Wikswo JP Jr: Noninvasive diagnosis of mesenteric ischemia using a SQUID magnetometer. Ann Surg 221(6):696–705, 1995

    PubMed  Google Scholar 

  11. Staton D, Golzarian J, Wikswo JP Jr, Friedman RN, Richards WO: Measurements of small bowel basic electrical rhythm (BER) in vivo using a high resolution magnetometer. Vienna, Austria: Elsevier, 1995

    Google Scholar 

  12. Lin SY, Chen JDZ, McCallum RW: Extraction of small intestinal slow waves from the surface electrical recording. Gastroenterology 104(4):A543, 1993

    Google Scholar 

  13. Smout AJPM, Van der Schee EJ, Grashuis JL, What is measured in electrogastrography? Dig Dis Sci 25:179–187, 1980

    PubMed  Google Scholar 

  14. Chen JDZ, Schirmer BD, McCallum RW: Measurement of electrical activity of the human small intestine using surface electrodes. IEEE Trans Biomed Eng 40(6):598–602, 1993

    PubMed  Google Scholar 

  15. Martin PM, Kingma YJ, Bowes KL: Different electrode configurations and active electrode surfaces yield different frequency spectra of gastric electrical signals. Gastroenterology 104(4):A554, 1993

    Google Scholar 

  16. Hocking MP, Vogel SB, Sninsky CA: Human gastric myoelectric activity and gastric emptying following gastric surgery and with pacing. Gastroenterology 103:1811–1816, 1991

    Google Scholar 

  17. Richards WO, Staton D, Golzarian J, Friedman RN, Wikswo JP Jr: Non-invasive SQUID magnetometer measurement of human gastric and small bowel electrical activity.In L Deecke, C Baumgartner, G Stroink, SJ Williamson (eds). Biomagnetism: Fundamental Research and Clinical Applications—Proceedings of the 9th International Conference on Biomagnetism. Vienna, Austria: Elsevier, 1995, Vol 7, pp 743–747

    Google Scholar 

  18. Strobach P, Abraham-Fuchs K, Harer W: Event-synchronous cancellation of the heart interference in biomedical signals. IEEE Trans Biomed Eng 41(4):343–350, 1994

    PubMed  Google Scholar 

  19. Marple S: Digital Spectral Analysis with Applications. Englewood Cliffs, NJ, Prentice-Hall, 1987

    Google Scholar 

  20. Fleckenstein P: Migrating electrical spike activity in the fasting human small intestine. Am J Dig Dis 23:769–775, 1978

    PubMed  Google Scholar 

  21. Saijyo T, Nomura M, Haruta Y,et al.: Biomagnetic measurement of gastric electrical activity by 64-channel magnetogastrographic imaging. Gastro 108(4):A681, 1995

    Google Scholar 

  22. Alvarez WC: The electrogastrogram and what it shows. JAMA 78:1116–1118, 1992

    Google Scholar 

  23. Abell TL, Malagelada JR: Electrogastrography: Current assessment and future perspectives. Dig Dis Sci 33(8):982–992, 1988

    PubMed  Google Scholar 

  24. Koch KL, Stern RM: The relationship between the cutaneously recorded electrogastrogram and antral contractions in man.In RM Stern, KL Koch (eds). Electrogastrography: Methodology, Validation and Applications. New York, Praeger, 1985, pp 116–131

    Google Scholar 

  25. Jebbink H, Bravenboer B, Akkermans L, van-Berge-Henegouwen G, Smout A: Gastric myoelectrical activity in patients with type I diabetes mellitus and autonomic neuropathy. Dig Dis Sci 39(11):2376–2383, 1994

    PubMed  Google Scholar 

  26. Chen J, Schirmer B, McCallum R: Serosal and cutaneous recordings of gastric myoelectrical activity in patients with gastroparesis. Am J Physiol 266 (Gastrointest Liver Physiol 29):G90-G98, 1994

    PubMed  Google Scholar 

  27. Hamilton JW, Bellahsene B, Reichelderfer M, Webster JG, Bass P: Human electrogastrograms: Comparison of surface and mucosal recordings. Dig Dis Sci 31:33–39, 1986

    PubMed  Google Scholar 

  28. Richter HM, Kelly KA: Effect of transection and pacing on human jejunal pacesetter potentials. Gastroenterology 91:1380–1385, 1986

    PubMed  Google Scholar 

  29. Bradshaw LA, Wikswo JP, Jr, Richards WO: The effect of abdominal layers on electric and magnetic fields from gastro-intestinal electrical activity: Computer simulations. Gastroenterology 110(4):A640, 1996

    Google Scholar 

  30. Bradshaw LA, Allos SH, Wikswo JP Jr, Richards WO: The effect of abdominal layers on electric and magnetic fields from gastrointestinal electrical activity. Gastroenterology 110(4):A640, 1996

    Google Scholar 

  31. Wikswo J: Biomagnetic sources and their models.In S Williamson (ed). Advances in Biomagnetism. New York, Plenum, 1989, pp 1–18

    Google Scholar 

  32. von Helmholtz H: Ueber einige Gesetze der Vertheilung elektrisher Strome in Korperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem 89:211–233, 353–377, 1853

    Google Scholar 

  33. Hamalainen MR, Hari R, Knuutila J, Lounasmaa OV: Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497, 1993

    Google Scholar 

  34. Bradshaw LA, Wijesinghe RS, Wikswo JP Jr: A spatial filtering forward and inverse model of EEG and MEG. Proc 16th Annu Int Conf IEEE Eng Med Biol Soc 16:167–168, 1994

    Google Scholar 

  35. Chen J, Vandewalle J, Sansen W, Vantrappen G, Janssens J: Adaptive spectral analysis of cutaneous electrogastric signals using autoregressive moving average modelling. Med Biol Eng Comput 28:531–536, 1990

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, W.O., Alan Bradshaw, L., Staton, D.J. et al. Magnetoenterography (MENG). Digest Dis Sci 41, 2293–2301 (1996). https://doi.org/10.1007/BF02100117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100117

Key words

Navigation