Skip to main content
Log in

Formation of organic products in self-radiolyzed calcium carbonate

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Calcium carbonate labeled with carbon-14 was self-irradiated by means of the β-decay of its carbon-14. A number of products containing one or two carbon atoms were identified by high performance liquid chromatography. Formic and oxalic acids were produced in relatively high yields, while glyoxylic, glycolic, and acetic acids, as well as formaldehyde and methanol, were formed in lower yields. These results support the suggestion that carbonates subjected to ionizing radiation could have been a source of carbon for organic synthesis on the primitive earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albarrán G, Collins CH (1987) Application of ion-moderated partition chromatography to the determination of Ca14CO3 and Ba14CO3 self-radiolysis products. J Chromatogr (in press)

  • Apers DJ, Debuyst R, Dejehet F, Lombard E (1980) A propos d'un essai de datation par RPE de concretions calcaires originaires de grottes belges. Radiochem Radioanal Lett 45:427–440

    Google Scholar 

  • Broda E (1975) The evolution of the bioenergetic processes. Pergamon Press, London

    Google Scholar 

  • Bullard E (1952) In: Kuiper GP (ed) The atmosphere of the earth and planets. University of Chicago Press, Chicago

    Google Scholar 

  • Calderon T, Aguilar M, Jaque F, Coy-yel R (1984) Thermoluminescence from natural calcites. J Phys C Solid State Phys 17:2027–2038

    Article  Google Scholar 

  • Cass J, kent RS, Marshall SA, Zager SA (1974) Electron spin resonance absorption spectrum of HCO3 2− molecule-ions in irradiated single-crystal calcite. J Magn Reson 14:170–181

    Google Scholar 

  • Castillo-Rojas S, Negron-Mendoza A, Draganić ZD, Draganić IG (1985) The radiolysis of aqueous solutions of malic acid. Radiat Phys Chem 26:437–443

    Article  Google Scholar 

  • Collins CH, Collins KE, Ackerhalt RE, Blau M (1975) Chemical forms of tritium in reactor produced fluorine-18. Int J Appl Radiat Isot 26:571–572

    Article  PubMed  Google Scholar 

  • Collins KE, Collins CH (1977) Annealing of tritium labelled products in reactor irradiated lithium carbonate. J Inorg Nucl Chem 39:745–748

    Article  Google Scholar 

  • Collins KE, Farris MG, Costa-Pereira SCL, Collins CH (1982) Organic products observed in self-radiolyzed Ba14CO3. In: Jiménez-Reyes M (ed) Memorias del IV simposio sobre Química Nuclear, Radioquímica y Química de Radiaciones, UNAM, México, DF, pp 57–60

    Google Scholar 

  • Cunningham J (1967) Electron-hole trapping in X-irradiated calcium carbonate and sodium nitrate. J Phys Chem 71:1967–1970

    Google Scholar 

  • Debenham NC (1983) Reliability of thermoluminescence dating of stalagmitic calcite. Nature (London) 304:154–156

    Article  Google Scholar 

  • Draganić IG, Draganić ZD, Altiparmokov D (1983) Natural nuclear reactors and ionizing radiation in the Precambrian. Precambrian Res 20:283–298

    Article  Google Scholar 

  • Edwards WJ, McCallum KJ (1956) Chemical effects of the C12(γ,n)C11 reaction in carbonates. Can J Chem 34:189–192

    Google Scholar 

  • Farris MG, Cruz PEN, Collins KE (1979) Dissolução de carbonatos metálicos no sistema resina-H2O. Quím Nova 2:129

    Google Scholar 

  • Hisatsune IC, Adl T, Beahm EC, Kempf RJ (1970) Matrix isolation and decay kinetics of carbon dioxide and carbonatc anion free radicals. J Phys Chem 74:3225–3231

    Article  Google Scholar 

  • Hubbard JS, Hardy JP, Horowitz NH (1971) Photocatalytic production of organic compounds from CO and H2O in a simulated Martian atmosphere. Proc Natl Acad Sci USA 68: 574–578

    Google Scholar 

  • Ikeya M (1975) Dating a stalactice by electron paramagnetic resonance. Nature (London) 255:48–50

    Article  Google Scholar 

  • Kolbe WF, Smakula A (1961) Anisotropy of color centers in calcite. Phys Rev 124:1754–1757

    Article  Google Scholar 

  • Kolomnikov IS, Lysyak TV, Konash EA, Kalyazin EP, Rudnev AV, Kharitonov YY (1982) Formation of organic products from metal carbonates and water by the action of ionizing radiation. Dokl Phys Chem 25:596–597

    Google Scholar 

  • Macdougall JD, Lugmair GW, Kerridge JF (1984) Early solar system aqueous activity: strontium isotope evidence from the Orgueil CI meteorite. Nature (London) 307:249–251

    Article  Google Scholar 

  • Marshall SA, Reinberg AR, Serway RA, Hodges JA (1964) Electron spin resonance absorption spectrum of CO 2 moleculeions in single crystal calcite. Mol Phys 8:225–231

    Google Scholar 

  • Marshall SA, McMillan JA, Nistor SV (1974) Superhyperfine structure of the ESR spectra of CO2 and CO3 3− moleculeions in single-crystal calcite. J Magn Reson 14:20–30

    Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on the earth. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Negron-Mendoza A, Draganić ZD, Navarro-Gonzáles R, Draganić IG (1983) Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles. Radiat Res 95:248–261

    Google Scholar 

  • Perrin DD, Armarego WLF, Perrin DR (1966) Purification of laboratory chemicals. Pergamon Press, New York

    Google Scholar 

  • Pfeiffer K, Rank D, Techurlovits M (1981) A method for counting14C as CaCO3 in a liquid scintillator with improved precision. Int J Appl Radiat Isot 32:665–667

    Article  Google Scholar 

  • Sandford SA (1986) Acid dissolution experiments: carbonates and the 6,8-micrometer band in interplanetary dust particles. Science 231:1540–1541

    Google Scholar 

  • Serway RA, Marshall SA (1967) Electron spin resonance absorption spectra of CO3 and CO3 3− molecule-ions in irradiated single-crystal calcite. J Chem Phys 46:1949–1952

    Article  Google Scholar 

  • Sharman LJ, McCallum KJ (1955) Chemical effects of the C12(γ,n)C11 reaction in anhydrous sodium carbonate. J Am Chem Soc 77:2989–2992

    Article  Google Scholar 

  • Suess E, Balzer W, Hesse KF, Müller PJ, Ungerer CA, Weter G (1982) Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic shelf: precursors of glendonites. Science 216:1128–1131

    Google Scholar 

  • Tomeoka K, Buseck PR (1986) A carbonate-rich, hydrated, interplanetary dust particle: possible residue from protostellar clouds. Science 231:1544–1546

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albarrán, G., Collins, K.E. & Collins, C.H. Formation of organic products in self-radiolyzed calcium carbonate. J Mol Evol 25, 12–14 (1987). https://doi.org/10.1007/BF02100035

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100035

Key words

Navigation