Skip to main content
Log in

Ecology and taxonomy of chitinoclasticCytophaga and related chitin-degrading bacteria isolated from an estuary

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A total of 103 strains of estuarine, Chitinoclastic bacteria isolated from water, and sediment samples collected from the upper Chesapeake Bay, including 17 freshwater and 11 seawater isolates, were subjected to numerical taxonomy analysis. The isolates included 44 yellow-orange pigmented strains classified asCytophaga-like bacteria (CLB) of theCytophagaceae. Salt requirement of the strains ranged from tolerance to ≤1% NaCl to an absolute requirement for NaCl, with 1% NaCl satisfying this requirement. The largest phenon consisted of facultatively anaerobic, oligo-nitrophilic, and flexirubin pigment-producing freshwater and estuarine isolates, and included reference strains of bothCytophaga johnsonae Stanier andCytophaga aquatilis Strohl and Tait. Other phena, containing a smaller number of strains, comprised marine and estuarine isolates which did not produce flexirubin pigments, and required organic nitrogen for growth and for production of chitinolytic enzymes. Salt-requiring, flexirubin pigment-producing, chitin-degrading strains were, on occasion, isolated from estuarine samples and represented phena found in estuaries. Most of theCytophaga isolates, as well as chitin-degrading species not of the genusCytophaga that were isolated from Chesapeake Bay, clustered in phena representing previously described species of aerobic, zymogenic, chitinoclastic bacteria. When the frequency of occurrence of features related to environmental parameters, viz., pH, salinity, temperature range of growth, and growth on media lacking organic nitrogen, was calculated, ecological groupings of strains in the 2 major phena of CLB could be distinguished among the estuarine, chitin-degrading bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach H, Kohl W, Reichenbach H (1976) Flexirubin, ein neuartiges pigment ausFlexibacter elegans. Chem. Ber. 109:2490–2502

    Google Scholar 

  2. Aumen NG (1980) Microbial succession on a chitinous substrate in a woodland stream. Microb Ecol 6:317–327

    Article  Google Scholar 

  3. Austin B, Garges S, Conrad B, Harding EE, Colwell RR, Simidu U, Taga N (1979) Comparative study of the aerobic, heterotrophic bacterial flora of Chesapeake Bay and Tokyo Bay. Appl Environ Microbiol 37:704–714

    PubMed  Google Scholar 

  4. Barber M, Kuper SWA (1951) Identification ofStaphylococcus pyogenes by the phosphatase reaction. J Pathol Bacteriol 63:65–68

    Article  PubMed  Google Scholar 

  5. Berkeley RCW (1978) Chitinolytic and chitosanolytic microorganisms and the potential biodeterioration problem in the commercial application of chitin and its derivatives. In: Muzzarelli RAA, Pariser ER (eds) Proceedings of the First International Conference on Chitin/Chitosan. MIT Sea Grant Program, Cambridge, Massachusetts, pp 570–577

    Google Scholar 

  6. Campbell LL, Williams OB (1951) A study of chitin-decomposing microorganisms of marine origin. J Gen Microbiol 5:894–905

    PubMed  Google Scholar 

  7. Christensen PJ (1977) The history, biology, and taxonomy of theCytophaga group. Can J Microbiol 23:1599–1653

    PubMed  Google Scholar 

  8. Christensen PJ, Cook FD (1972) The isolation and enumeration of cytophagas. Can J Microbiol 18:1933–1940

    PubMed  Google Scholar 

  9. Christensen PJ, Cook FD (1978)Lysobacter, a new genus of non-fruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393

    Google Scholar 

  10. Christensen WB (1946) Urea decomposition as a means of differentiatingProteus and paracolon cultures from each other and fromSalmonella andShigella types. J Bacteriol 52:461–466

    Google Scholar 

  11. Colwell RR, Wiebe WJ (1970) “Core” characteristics for use in classifying aerobic, heterotrophic bacteria by numerical taxonomy. Bulletin of the Georgia Academy of Science 28:165–185

    Google Scholar 

  12. Hayes PR (1963) Studies on marìne flavobacteria. J Gen Microbiol 30:1–19

    PubMed  Google Scholar 

  13. Hayes PR (1977) A taxonomic study on flavobacteria and related gram-negative yellow pigmented rods. J Appl Bacteriol 43:345–367

    Google Scholar 

  14. Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 66:24–26

    PubMed  Google Scholar 

  15. Kaneko T, Colwell RR (1975) Incidence ofVibrio parahaemolyticus in Chesapeake Bay. Appl Microbiol 30:251–257

    PubMed  Google Scholar 

  16. Kihara K, Morooka N (1962) Studies on marine chitin-decomposing bacteria. (I) Classification and description of species. J Oceanogr Soc Japan 18:147–152

    Google Scholar 

  17. Kovacs N (1956) Identification ofPseudomonas pyocyanea by the oxidase reaction. Nature 178:703

    PubMed  Google Scholar 

  18. Leadbetter ER (1974) Order II. Cytophagales nomen novum. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th ed. The Williams and Wilkins Co., Baltimore, p 99

    Google Scholar 

  19. Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184

    PubMed  Google Scholar 

  20. Lovelace TE, Colwell RR (1968) A multipoint inoculator for petri dishes. Appl Microbiol 16:944–945

    PubMed  Google Scholar 

  21. McMeekin TA (1977) Ultraviolet light sensitivity as an aid for the identification of gramnegative yellow pigmented rods. J Gen Microbiol 103:159–151

    Google Scholar 

  22. Møller V (1955) Simplified tests for some amino acid decarboxylases and for the argininedehydrolase system. Acta Pathol Microbiol Scand 36:158–172

    PubMed  Google Scholar 

  23. Morishita H (1978) Genetic regulation on salt resistance in halophilic bacteria. In: Caplan SR, Ginzburg M (eds) Energetics and structure of halophilic microorganisms. Elsevier/North-Holland Biomedical Press, pp 599–606

  24. Morishita H (1978) Control by episome on salt-resistance in bacteria. In: Noda H (ed) Origin of life. Japan Scientific Societies Press, pp 431–439

  25. Reichardt W (1974) Zur Oekophysiologie einiger Gewaesserbakterien aus der Flavobacterium-Cytophaga-Gruppe. Zbl Bakt Hyg I. Abt Orig A 227:85–93

    Google Scholar 

  26. Reichardt W (1975) Bacterial decomposition of different polysaccharides in a eutrophic lake. Verh Internat Verein Limnol 19:2636–2642

    Google Scholar 

  27. Reichardt W (1978) Jahreszeitliche Verteilungsmuster heterotropher Bakterien, bakterieller Faekalindikatoren und der geloesten organischen Substanz in Bodensee (Obersee und Ueberlinger See). Swiss J Hydrol 40:249–261

    Google Scholar 

  28. Reichardt W (1978) Einfuehrung in die Methoden der Gewaessermikrobiologie. G. Fischer Verlag, Stuttgart

    Google Scholar 

  29. Seki H, Taga N (1963) Microbiological studies on the decomposition of chitin in marine environment. I. Occurrence of chitinoclastic bacteria in the neritic region. J Oceanogr Soc Japan 19:101–108

    Google Scholar 

  30. Shewan JM (1969) The importance of myxobacteria and flavobacteria for the applied microbiologist. J Appl Bacteriol 32:1–4

    PubMed  Google Scholar 

  31. Shewan JM, Hodgkiss W, Liston J (1954) A method for the rapid differentiation of certain non-pathogenic asporogeneous bacilli. Nature 173:208–209

    Google Scholar 

  32. Sierra G (1957) A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–23

    PubMed  Google Scholar 

  33. Skerman VBD (1967) A guide to the identification of the genera of bacteria. The Williams and Wilkins Co., Baltimore

    Google Scholar 

  34. Sneath PHA (1966) Identification methods applied toChromobacterium. In: Gibbs BB, Skinner FA (eds) Identification methods for microbiologists. Part A. Academic Press, London, pp 15–20

    Google Scholar 

  35. Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. WH Freeman Co., San Francisco

    Google Scholar 

  36. Soriano S (1973) Flexibacteria. Ann Rev Microbiol 27:155–170

    Article  Google Scholar 

  37. Stanier RW (1947) Studies on non-fruiting myxobacteria.Cytophaga johnsonae n. sp., a chitindecomposing myxobacterium. J Bacteriol 53:297–315

    Google Scholar 

  38. Stanley SO, Morita RY (1968) Salinity effect on the maximum growth temperature of some bacteria isolated from marine environments. J Bacteriol 95:169–173

    PubMed  Google Scholar 

  39. Stevenson LH, Millwood CE, Hebeler BH (1974) Aerobic, heterotrophic bacterial populations in estuarine water and sediments. In: Colwell RR, Morita RY (eds) Effect of the ocean environment on microbial activities. University Park Press, Baltimore, pp 268–285

    Google Scholar 

  40. Strohl WR, Tait LR (1978)Cytophaga aquatilis sp. nov., a facultatively anaerobe isolated from the gills of freshwater fish. Int J Syst Bacteriol 28:293–303

    Google Scholar 

  41. Thornley MJ (1960) The differentiation ofPseudomonas from other gram-negative bacteria on the basis of arginine metabolism. J Appl Bacteriol 23:37–52

    Google Scholar 

  42. Väätänen P (1980) Effects of environmental factors on microbial populations in brackish waters off the southern coast of Finland. Appl Environ Microbiol 40:48–54

    Google Scholar 

  43. Väätänen P (1980) Factor analysis of the impact of the environment on microbial communities in the Tvärminne area, southern coast of Finland. Appl Environ Microbiol 40:55–61

    Google Scholar 

  44. Veldkamp H (1955) A study of the aerobic decomposition of chitin by microorganisms. Mededelingen van de Landbouwhogeschool te Wageningen/Nederland 55:127–174

    Google Scholar 

  45. Weeks OB (1969) Problems concerning the relationships of cytophagas and flavobacteria. J Appl Bacteriol 32:13–18

    PubMed  Google Scholar 

  46. Wiebe WJ, Liston J (1972) Studies of the aerobic, nonexacting, heterotrophic bacteria of the benthos. In: Pruter AT, Alverson DL (eds) The Columbia River estuary and adjacent ocean waters. Univ Washington Press, Seattle

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichardt, W., Gunn, B. & Colwell, R.R. Ecology and taxonomy of chitinoclasticCytophaga and related chitin-degrading bacteria isolated from an estuary. Microb Ecol 9, 273–294 (1983). https://doi.org/10.1007/BF02097742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097742

Keywords

Navigation