Skip to main content
Log in

Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Alzheimer's disease (AD) is a chronic dementia and neurodegenerative disorder affecting the oldest portions of the population. Brains of AD patients accumulate large amount of the AβP peptide in amyloid plaques.

2. The AβP[1–40] peptide is derived by proteolytic processing from a much larger amyloid precursor protein (APP), and has been circumstantially identified as the toxic principle causing cell damage in the disease.

4. The AβP[1–40] peptide is able to form quite characteristic calcium channels in planar lipid bilayers. These channels have conductances in the nS range, and can dissipate ion gradients quickly. The peptide can also cause equivalent cation conductances in cells.

5. We suggest that amyloid channel blocking agents might be therapeutically useful in Alzheimer's Disease, and have constructed molecular models of the channels to aid in the design of such compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arispe, N., Rojas, E., and Pollard, H. B. Alzheimer's Disease amyloidβ protein forms calcium channels in bilayer membranes (1993a). Blockade by tromethamine and aluminum.Proc. Nat. Acad. Sci (USA) 90567–571.

    Google Scholar 

  • Arispe, N., Pollard, H. B., and Rojas, E. (1993b). Giant, multi-level cation channels formed by Alzheimer's Disease Amyloid Protein (AβP[1–40]) in bilayer membranes.Proc. Nat. Acad. Sci. (USA) 9010573–10577.

    Google Scholar 

  • Arispe, N., Pollard, H. B., and Rojas, E. (1994).β-amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer's Disease.Mol. Cell. Biochem. 140119–125.

    PubMed  Google Scholar 

  • Beal, M. F. (1992). Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illness?Ann. Neurol. 31119–130.

    PubMed  Google Scholar 

  • Behl, C., Davis, J. B., Lesley, R., and Schubert, D. (1994). Hydrogen peroxide mediates amyloid beta protein toxicity.Cell 77817–827.

    PubMed  Google Scholar 

  • Busciglio, J., Gabuzda, D., Matsudiera, P., and Yankner, B. (1993). Generation of beta-amyloid in the secretory pathway in neuronal and non-neuronal cells.Proc. Nat. Acad. Sci. (USA) 902092–2096.

    Google Scholar 

  • Caporaso, G. L., Gandy, S., Buxbaum, J. D., and Greengard, P. (1992). Chloroquine inhibits intracellulat degradation but not secretion of the Alzheimerβ/A4 amyloid precursor protein.Proc. Natl. Acad. Sci. (USA) 892252–2256.

    Google Scholar 

  • Caporaso, G. L., Takei, K., Gandy, S. E., Matteoli, M., Mundigi, O., Greengard, P., and de Camilli, P. (1994). Morphological and biochemical analysis of the intracellular trafficking of the alzheimerβ/A4 amyloid precursor protein.J. Neuroscience 143122–3138.

    Google Scholar 

  • Choi, D. W. (1988). Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage.Trends Neurosci. 11465–469.

    PubMed  Google Scholar 

  • Cole, G. M., Huynh, T. V., and Saitoh, T. (1989). Evidence for lysosomal processing of amyloidβ-protein precursor in cultured cells.Neurochem. Res. 14933–939.

    PubMed  Google Scholar 

  • Crapper, D. R., Karlik, S., and De Boni, U. (1978). Aluminum and other metals in senile (Alzheimer) dementia. In Katzman, R., Terry, R. D., and Bicki, K. L.,Alzheimer's Disease: Senile Dementia and Related Disorders (Aging, Vol. 7), Raven Press, New York, pp. 471–485.

    Google Scholar 

  • Cruciani, R. A., Barker, J. L., Durrell, S. R., Raghunathan, G., Guy, H. R., Zasloff, M., and Stanley, E. F. (1992). Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes.Eur. J. Pharm. 226287–296.

    Google Scholar 

  • Davidson, R. M., Shajenko, L., and Donta, T. S. (1994). Amyloid beta peptide (AβP) potentiates a nimodipine-sensitive L-type barium conductance in N1E-115 neuroblastoma cells.Brain Res. 643324–327.

    PubMed  Google Scholar 

  • Durrell, S. R., and Guy, H. R. (1992). Atomic scale structure and functional models of voltage-gated potassium channels.Biophysical J 62238–250.

    Google Scholar 

  • Durrell, S. R., Guy, H. R., Arispe, N., Rojas, E., and Pollard, H. B. (1994). Theoretical models of the ion channel structure of amyloid-β-protein.Biophysical J 672137–2145.

    Google Scholar 

  • Dyrkes, T., Weidemann, A., Multhaup, G., Salbaum, J. M., Lemaire, H-G., Kang, J., Muller-Hill, B., Masters, C. L., and Beyreuther, K. (1988). Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease.EMBO J 7949–957.

    PubMed  Google Scholar 

  • Etcheberrigaray, R., Ito, E., Kim, C. S., and Alkon, D. L. (1994). Soluble beta amyloid induction of Alzheimer's phenotype for human fibroblast K+ channels.Science 264276–279.

    PubMed  Google Scholar 

  • Furukawa, K., Abe, Y., and Akaike, N. (1994). Amyloidβ protein-induced current in rat cortical neurones.NeuroReport 52016–2018.

    PubMed  Google Scholar 

  • Glenner, G. G., and Wong, C. W. (1984). Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun. 120885–890.

    PubMed  Google Scholar 

  • Goate, A., Chartier-Harlan, M-C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., and Hardy, J. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease.Nature 349704–706.

    PubMed  Google Scholar 

  • Golde, T., Estus, S., Yountkin, L., Selkoe, D., and Yountkin, S. (1992). Processing of the amyloid protein precursor to potentially amyloidogenic derivatives.Science 255728–730.

    PubMed  Google Scholar 

  • Goldgaber, D., Lerman, M. I., McBride, O. W., Saffioti, U., and Gajdusek, C. (1987). Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease.Science 235877–880.

    PubMed  Google Scholar 

  • Guy, H. R., and Conti, F. (1990). Pursuing the structure and function of voltage-gated channels.Trends Neurosci. 13201–206.

    PubMed  Google Scholar 

  • Haas, C., and Selkoe, D. J. (1993). Cellular processing ofβ-amyloid precursor protein and the genesis of the amyloidβ-peptide.Cell 751039–1042.

    PubMed  Google Scholar 

  • Haas, C., Schlossmacher, M., Hung, A., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B., Lieberberg, I., Koo, E., Schenk, D., Teplow, D., and Selkoe, D. J. (1992). Amyloid beta peptide is produced by cultured cells during normal metabolism.Nature 359322–327.

    PubMed  Google Scholar 

  • Hardy, J., and Allsop, D. (1991). Amyloid deposition as the central event in the aetiology of Alzheimer's disease.TIPS 12383–388.

    PubMed  Google Scholar 

  • Hardy, J. A., and Higgins, G. A. (1992). Alzheimer's disease: The amyloid cascade hypothesis.Science 256780–783.

    PubMed  Google Scholar 

  • Heurteaux, C., Bertaina, V., Widmann, C., and Lazdunski, M. (1993). K+ channel openers prevent global iachemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus.Proc. Natl. Acad. Sci. (USA) 909431–9435.

    Google Scholar 

  • Joseph, R., and Han, E. (1992). Amyloidβ-protein fragment 25–35 causes activation of cytoplasmic calcium in neurons.Biochem. Biophys. Res. Commun. 1841441–1447.

    PubMed  Google Scholar 

  • Kang, J., Lemaire, H-G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grszeschik, K-H., Multhaup, G., Beyreuther, K., and Müller-Hill, B. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor.Nature 325733–736.

    PubMed  Google Scholar 

  • Kawarabayashi, T., Shoji, M., Harigaya, Y., Yamaguchi, H., and Hirai, S. (1991). Expression of APP in early stages of brain damage.Brain Res. 563334–338.

    PubMed  Google Scholar 

  • Kitaguchi, N., Takahashi, Y., Tokoshima, S., Shiojiri, S., and Ito, H. (1988). Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity.Nature 331530–532.

    PubMed  Google Scholar 

  • Klatzo, I., Wisniewski, H., and Streicher, E. (1965). Experimental production of neurofibrillary degeneration.J. Neuropath. Exptl. Neurol. 24187–199.

    Google Scholar 

  • Lazarovici, P., Edwards, C., Raghunathan, G., and Guy, H. R. (1992). Secondary structure, permeability, and molecular modeling of pardaxin pores.J. Natural Toxins,11–15.

    Google Scholar 

  • Maruyama, K., Kametani, F., Usami, M., Yamao-Harigaya, W., and Tanaka, K. (1991). “Secretase” Alzheimer amyloid protein precursor secreting enzyme is not sequence-specific.Biochem. Biophys. Res. Commun. 1791670–1676.

    PubMed  Google Scholar 

  • Masters, C. L., Simms, G., Weinman, N. A., Malthaup, G., McDonald, B. I., and Beyreuther, K. (1985). Amyloid plaque core protein Alzheimer disease and Down syndrome.Proc. Natl. Acad. Sci. (USA) 824245–4249.

    Google Scholar 

  • Matson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberberg, I., and Rydel, R. E. (1992).β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity.J. Neurosci. 12376–389.

    PubMed  Google Scholar 

  • Mattson, M. P., Barger, S. W., Cheng, B., Lieberbger, I., Smith-Swintosky, V. L., and Rydel, R. E. (1993).β-amyloid precursor protein metabolites and loss of neuronal Ca2− homeostasis in Alzheimer's disease.Trends Neurosci. 16409–414.

    PubMed  Google Scholar 

  • Mirzebekov, T., Lin, M. C., Marshall, P. J., Carman, M., Tomaselli, K., Lieberberg, I., and Kagan, B. L. (1994).Biochem. Biophys. Res. Commun. 2021142–1148.

    PubMed  Google Scholar 

  • Nahas, G. G. (1962). The pharmacology of tris (hydroxymethyl)aminomethane (THAM).Pharm. Rev. 14447–472.

    PubMed  Google Scholar 

  • Nahas, G. G. (1963). The clinical pharmacology of THAM (tris(hydroxymethyl)aminomethane.Clin. Pharm. Ther. 4784–803.

    Google Scholar 

  • Neve, R. L., Dawes, L. R., Yankner, B. A., Benewitz, L. L., Rodriguez, W., and Higgins, G. A. (1990). Genetics and biology of the Alzheimer's disease precursor.Prog. Brain Res. 86257–267.

    PubMed  Google Scholar 

  • Nitsch, R. M., Farber, S. A., Growdon, J. H., and Wurtman, R. J. (1993). Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices.Proc. Natl. Acad. Sci. (USA) 905191–5195.

    Google Scholar 

  • Olanow, C. W., and Arendash, G. W. (1994). Metals and free radicals in neurodegeneration.Curr. Opin. Neurol. 7548–558.

    PubMed  Google Scholar 

  • Pollard, H. B., Rojas, E., and Arispe, N. (1994a).β-Amyloid in Alzheimer's Disease. Therapeutic implications.CNS Drugs 21–6.

    Google Scholar 

  • Pollard, J. R., Arispe, N., Rojas, E., and Pollard, H. B. (1994b). A geometric sequence that accurately describes allowed multiple conductance levels of ion channels: The “Three-Halves(3/2) Rule.Biophysical J. 67647–655.

    Google Scholar 

  • Ponte, P., Gonzalez-DeWitt, P., Schilling, J., Miller, J., Hsu, D., Greenberg, B., Davis, K., Wallace, W., Lieberberg, I., Fuller, F., and Cordell, B. (1988). A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors.Nature 331525–527.

    PubMed  Google Scholar 

  • Price, D., Borchelt, D., Walker, L., and Sisodia, S. (1992). Toxicity of synthetic A-beta peptides and modelling of Alzheimer's disease.Neurobiol. Aging 13623–625.

    PubMed  Google Scholar 

  • Raghunathan, G., Seetharamulu, P., Brooks, B. R., and Guy, H. R. (1990). Models ofδ-hemolysin membrane channels and crystal structure.Prot. Struct. Funct. Genet. 8213–225.

    Google Scholar 

  • Roberts, G. W., Gentleman, S. M., Lynch, A., and Graham, D. I. (1991).β-amyloid protein deposition in brain after head trauma.Lancet 3381421–1423.

    Google Scholar 

  • Sambamurti, K., Refolo, M., Shioi, J., Pappolla, M. A., and Robakis, N. K. (1992a). The Alzheimer's Amyloid precursor is cleaved intracellularly in the trans-golgi network or in a post-golgi compartment.Ann. N.Y. Acad. Sci. 674118–128.

    PubMed  Google Scholar 

  • Sambamurti, K., Shioi, J., Anderson, J. P., Pappolla, M. A., and Robakis, N. K. (1992b). Evidence for intracellular cleavage of the Alzheimer's amyloid precursor in PC 12 cells.J. Neurosci. Res. 33319–329.

    PubMed  Google Scholar 

  • Schubert, D., Behl, C., Lesley, R., Brack, A., Dargusch, R., Sagara, Y., and Kimura, H. (1995). Amyloid peptides are toxic via a common oxidative mechanism.Proc. Natl. Acad. Sci. (USA) 921989–1993.

    Google Scholar 

  • Selkoe, D. J. (1991). The molecular pathology of Alzheimer's disease.Neuron 6487–498.

    PubMed  Google Scholar 

  • Selkoe, D. J., Podlisny, M. B., Joachim, C. L., Vickers, E. A., and Lee, G. (1988). Beta-amyloid precursor protein of Alzheimer's disease occurs as 110–135-kilodalton membrane associated proteins in neural and nonneural tissue.Proc. Natl. Acad. Sci. (USA) 857341–7345.

    Google Scholar 

  • Seubert, P., Oltersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L., Bryant, K., Fritz, L. C., Galasko, D., Thal, L. J., Lieberberg, I., and Schenk, D. B. (1993). Secretion of beta amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide.Nature 361260–263.

    PubMed  Google Scholar 

  • Shoji, M., Golde, T., Ghiso, J., Cheung, T., Estus, S., Shaffer, L., Cai, X., McKay, D., Tintner, R., Frangione, B., and Younkin, S. (1992). Production of the Alzheimer's amyloid beta protein by normal proteolytic processing.Science 258126–129.

    PubMed  Google Scholar 

  • Siman, R., Card, P., Nelson, R. B., and Davis, L. G. (1989). Expression ofβ amyloid precursor protein in reactive astrocytes following neuronal damage.Neuron 3275–285.

    PubMed  Google Scholar 

  • Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., and Price, D. L. (1990). Evidence that beta-amyloid protein in Alzheimer's Disease is not derived by normal processing.Science 248492–495.

    PubMed  Google Scholar 

  • Swim, H. E. (1961). Amine and other noncarbonate buffers in cell culture media.Ann. N.Y. Acad. Sci. 92440–445.

    PubMed  Google Scholar 

  • Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruns, G. A. P., St. George-Hyslop, P., van Keuren, M. L., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L. (1987). Amyloidβ protein gene: cDNA, mRNA distribution and genetic linkage near the Alzheimer locus.Science 235880–882.

    PubMed  Google Scholar 

  • Tanzi, R. E., McClatchey, A. I., Lamperti, E. D., Villa-Kamaroff, L., Gusella, J. F., and Neve, R. L. (1988). Protease inhibitor domain encoded by an amyloid precursor mRNA associated with Alzheimer's disease.Nature 331528–530.

    PubMed  Google Scholar 

  • Terry, R. D., and Peña, C. (1965). Experimental production of neurofibrillary degeneration. Electron microscopy, phosphatase histochemistry, and electron probe analysis.J. Neuropath. Exptl. Neurol. 24200–210.

    Google Scholar 

  • Tsien, R. W., Hess, P., McClesky, E. W., and Rosenberg, R. L. (1987). Calcium channels: mechanisms of selectivity, permeation and block.Ann. Rev. Biophys. Chem. 16265–290.

    Google Scholar 

  • Van Nostrand, W. E., Schmaier, A. H., Farrow, J. S., and Cunningham, D. D. (1990). Protease nexin II (amyloidβ-protein precursor): A platletα granule protein.Science 248745–748.

    PubMed  Google Scholar 

  • Vassilacopoulou, D., Ripellino, J. A., Tezapsidis, N., Hook, V. Y. H., and Robakis, N. K. (1995). Full-length and truncated Alzheimer amyloid precursors in chromaffin granules: Solubilization of membrane amyloid precursor is mediated by an enzymatic mechanism.J. Neurochem. 642140–2146.

    PubMed  Google Scholar 

  • Whitson, J. S., and Appel, S. H. (1995). Neurotoxicity of A beta amyloid protein in vitro is not altered by calcium channel blockade.Neurobiol. Aging 165–10.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard, H.B., Arispe, N. & Rojas, E. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol Neurobiol 15, 513–526 (1995). https://doi.org/10.1007/BF02071314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02071314

Key words

Navigation