Skip to main content
Log in

Relationship between pyrophosphate, amorphous calcium phosphate and other factors in the sequence of calcificationin vivo

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The amounts of inorganic pyrophosphate (PPi), orthophosphate and calcium have been measured in resting, proliferating, hypertrophic and calcified cartilage from foetal calf epiphyses and also in cancellous, periosteal and compact bone. In the cartilage samples, the content of PPi increased progressively in the order named above, from values of 8.59 μg P/g dry weight in resting cartilage to 236 μg P/g dry weight in calcified cartilage. However, the ratio of PPi to orthophosphate followed the reverse relationship and was highest in the resting zone and fell dramatically as the tissue calcified. The possible role of PPi in inhibiting the precipitation of amorphous calcium phosphate (ACP) and in the slowing the transformation of ACP to hydroxyapatite (HA) in calcifying tissues is discussed in relation to other factors, such as collagen, magnesium, phospholipids and proteinpolysaccharides, which might also influence the processin vivo. At present, no single factor can be identified as a proven physiological regulator.

Résumé

Les concentrations de pyrophosphate inorganiques (PPi), d'orthophosphate et de calcium ont été déterminées dans le cartilage au repos, en prolifération, hypertrophique et calcifié au niveau d'épiphyses foetales de veaux et aussi dans l'os spongieux, périosté et compact. Dans les échantillons de cartilage, le contenu en PPi augmente progressivement dans l'ordre énoncé ci-dessus, de 8.59 μg P/g en poids sec de cartilage au repos à 236 μg P/g en poids sec dans le cartilage calcifié. Cependant, le rapport PPi sur orthophosphate suit une relation inverse: il est plus élevé dans la zone de repos et diminue considérablement lorsque le tissu se calcifie. Le rôle possible du PPi, en inhibant la précipitation de phosphate de calcium amorphe (ACP) et en ralentissant la transformation d'ACP en hydroxyleapatite (HA) dans les tissus calcifiés, est envisagé par rapport à d'autres facteurs, tels que le collagène, le magnésium, les phospholipides et les protéines-polysaccharides, qui peuvent aussi intervenirin vivo. Pour l'instant, aucun facteur isolé ne peut être considéré comme un régulateur physiologique certain.

Zusammenfassung

Der Gehalt an anorganischem Pyrophosphat (PPi), Orthophosphat und Calcium wurde in ruhendem, proliferierendem, hypertrophischem und verkalktem Knorpel von foetalen Kalbsepiphysen und auch in spongiösem, periostalem und kompaktem Knochen gemessen. Bei den Knorpelproben nahm der Gehalt an PPi progressiv in der oben angegebenen Reihenfolge zu: von 8,59 μg P/g Trockengewicht in ruhendem Knorpel bis zu 236 μg P/g Trockengewicht in verkalktem Knorpel. Das PPi/Orthophosphat-Verhältnis hingegen verlief in umgekehrter Richtung; es war am höchsten in der ruhenden Zone und nahm dramatisch ab, wenn das Gewebe verkalkte. Die mögliche Rolle von PPi bei der Hemmung der Ausfällung von amorphem Calciumphosphat (ACP) und bei der Verlangsamung der Umwandlung von ACP in Hydroxyapatit (HA) in verkalkenden Geweben wird in bezug auf folgende anderen Faktoren, welche den Vorgang in vivo ebenfalls beieinflussen könnten, diskutiert: Collagen, Magnesium, Phospholipide und Proteinpolysaccharide. Bis jetzt war es nicht möglich, einen einzelnen Faktor als sicheren physiologischen Regulator zu identifizieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcock, N. W., Shils, M. D.: Association of inorganic pyrophosphatase activity with normal calcification or rat costal cartilagein vivo. Biochem. J.112, 505–510 (1969).

    PubMed  Google Scholar 

  • Ali, S. Y.: Degradation of cartilage matrix by an intracellular protease. Biochem. J.93, 611–618 (1964).

    PubMed  Google Scholar 

  • Ali, S. Y., Sajdera, S. W., Anderson, H. C.: Isolation and characterisation of calcifying matrix vesicles from epiphyseal cartilage. Proc. nat. Acad. Sci. (Wash.)67, 1513–1520 (1970).

    Google Scholar 

  • Anderson, H. C.: Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol.41, 59–72 (1969).

    Article  PubMed  Google Scholar 

  • Bisaz, S., Russell, R. G. G., Fleisch, H.: Isolation of inorganic pyrophosphate from bovine and human teeth. Arch. oral Biol.13, 683–696 (1968).

    Article  PubMed  Google Scholar 

  • Bonucci, E.: Fine structure of early cartilage calcification. J. Ultrastruct. Res.20, 33–50 (1967).

    Article  PubMed  Google Scholar 

  • Bonucci, E.: Fine structure and histochemistry of “calcifying globules” in epiphyseal cartilage. Z. Zellforsch.103, 192–217 (1970).

    Article  PubMed  Google Scholar 

  • Cartier, P.: La minéralization du cartilage ossifiable. VIII. Les pyrophosphates du tissu osseux. Bull. Soc. Chim. biol. (Paris)41, 573–583 (1959).

    Google Scholar 

  • Cotmore, J. M., Nichols, G., Wuthier, R. E.: Phospholipid-calcium phosphate complex. Enhanced calcium migration in the presence of phosphate. Science172, 1339–1341 (1971).

    PubMed  Google Scholar 

  • Di Salvo, J., Schubert, M.: Specific interaction of some cartilage protein polysaccharides with freshly precipitating calcium phosphate. J. biol. Chem.242, 705–710 (1967).

    PubMed  Google Scholar 

  • Dziewiatkowski, D. D.: The role of sulfated protein-polysaccharides in calcification. Clin. Orthop.35, 189–201 (1964).

    PubMed  Google Scholar 

  • Fernley, H. N., Walker, P. G.: Studies on alkaline phosphatases: inhibition by phosphate derivatives and the substrate specificity. Biochem. J.104, 1011–1018 (1967).

    PubMed  Google Scholar 

  • Fleisch, H., Neuman, W. F.: Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Amer. J. Physiol.200, 1296–1300 (1961).

    PubMed  Google Scholar 

  • Fleisch, H., Russell, R. G. G., Bisaz, S., Termine, J. D., Posner, A. S.: Influence of pyrophosphate on the transformation of amorphous to crystalline calcium phosphate. Calc. Tiss. Res.2, 49–59 (1968).

    Google Scholar 

  • Fleisch, H., Russell, R. G. G., Straumann, F.: Effect of pyrophosphate on hydroxyapatite and its implication in calcium homeostasis. Nature (Lond.)212, 901–903 (1966).

    Google Scholar 

  • Follis, R. H., Jr.: Studies on the chemical differentiation of developing cartilage and bone. I. General method. Alkaline phosphatase activity. Bull. Johns Hopk. Hosp.85, 360–369 (1949).

    Google Scholar 

  • Francis, M. D.: The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates. Calc. Tiss. Res.3, 151–162 (1969).

    Google Scholar 

  • Fraser, D.: Hypophosphatasia. Amer. J. Med.22, 730–746 (1957).

    Article  PubMed  Google Scholar 

  • Gabbiani, G.: Effect of phosphates upon experimental skin calcinosis. Canad. J. Physiol. Pharmacol.44, 320–327 (1966).

    Google Scholar 

  • Hekkelman, J. W.: Studies on the alkaline phosphatase activity on the surface of living bone cells. Calc. Tiss. Res.4, Suppl. 73–74 (1970).

    Google Scholar 

  • Hirschman, A., Silverstein, D.: The effect of proteolytic enzymes and hyaluronidase in vitro on the calcification mechanism of epiphyseal cartilage. Proc. Soc. exp. Biol. (N.Y.)129, 675–678 (1968).

    Google Scholar 

  • Howell, D. S., Pita, J. C., Marquez, J. F., Gatter, R. A.: Demonstration of macromolecular inhibitors(s) of calcification and nucleational factors(s) in fluid from calcifying sites in cartilage. J. clin. Invest.48, 630–641 (1969).

    PubMed  Google Scholar 

  • Jibril, A. O.: Proteolytic degradation of ossifying cartilage matrix and the removal of acid mucopolysaccharides prior to bone formation. Biochim. biophys. Acta (Amst.)136, 162–165 (1967).

    Google Scholar 

  • Jung, A., Bisaz, S., Fleisch, H.: The binding of pyrophosphate and two diphosphoantes by hydroxyapatite crystals (submitted).

  • Lapiere, Ch. M., Nusgens, B. V.: Chemistry and molecular biology of the intercellular matrix, ed. by E. A. Balays, vol. 1, pp. 55–79. New York: Academic Press 1970.

    Google Scholar 

  • Perkins, H. R., Walker, P. G.: The occurrence of pyrophosphate in bone. J. Bone Jt Surg. B40, 333–339 (1958).

    Google Scholar 

  • Pita, J. C., Cuervo, L. A., Madruga, J. E., Muller, F. J., Howell, D. S.: Evidence for a role of proteinpolysaccharides in regulation of mineral phase separation in calcifying cartilage. J. clin. Invest.49, 2188–2197 (1970).

    PubMed  Google Scholar 

  • Richelle, L. J.: Contribution à l'étude du métabolisme mineral de l'os chez le rat. Thesis, University of Liege (1967).

  • Robison R.: The possible significance of hexosephosphoric esters in ossification. Biochem. J.17, 286–293 (1923).

    Google Scholar 

  • Russell, R. G. G.: Excretion of inorganic pyrophosphate in hypophosphatasia. Lancet1965 II, 461–464.

  • Russell, R. G. G., Bisaz, S., Donath, A., Morgan, D. B., Fleisch, H.: Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta and other disorders of bone. J. clin. Invest.50, 961–969 (1971).

    PubMed  Google Scholar 

  • Russell, R. G. G., Fleisch, H.: Inorganic pyrophosphate and pyrophosphatases in calcification and calcium homeostasis. Clin. Orthop.69, 101–117 (1970).

    PubMed  Google Scholar 

  • Schibler, D., Russell, R. G. G., Fleisch, H.: Inhibition by pyrophosphatase and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin. Sci.35, 363–372 (1968).

    PubMed  Google Scholar 

  • Termine, J. D., Peckauskas, R. A., Posner, A. S.: Calcium phosphate formationin vitro. II. Effects of environment on amorphous crystalline transformation. Arch. Biochem.140, 318–325 (1970).

    Article  PubMed  Google Scholar 

  • Termine, J. D., Posner, A. S.: Amorphous/crystalline interrelationships in bone mineral. Calc. Tiss. Res.1, 8–23 (1967).

    Article  Google Scholar 

  • Termine, J. D., Posner, A. S.: Calcium phosphate formationin vitro. I. Factors affecting initial phase separation. Arch. Biochem.140, 307–317 (1970).

    Article  PubMed  Google Scholar 

  • Termine, J. D., Wuthier, R. E., Posner, A. S.: Amorphous/crystalline mineral changes during endochondral and periosteal bone formation. Proc. Soc. exp. Biol. (N.Y.)125, 4–9 (1967).

    Google Scholar 

  • Weinstein, H., Sachs, C. R., Schubert, M.: Proteinpolysaccharide in connective tissue: Inhibition of phase separation. Science142, 1073–1075 (1963).

    PubMed  Google Scholar 

  • Wuthier, R. E.: A zonal analysis of inorganic and organic constituents of the epiphysis during endochondral calcification. Calc. Tiss. Res.4, 20–38 (1969).

    Google Scholar 

  • Wuthier, R. E.: Zonal analysis of phospholipids in the epiphyseal cartilage and bone of normal and rachitic chickens and pigs. Calc. Tiss. Res.8, 36–53 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wuthier, R.E., Bisaz, S., Russell, R.G.G. et al. Relationship between pyrophosphate, amorphous calcium phosphate and other factors in the sequence of calcificationin vivo . Calc. Tis Res. 10, 198–206 (1972). https://doi.org/10.1007/BF02012549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02012549

Key words

Navigation