Skip to main content
Log in

Modeling subsurface flow in sedimentary basins

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Grundwasserbewegungen in sedimentären Becken, die von dem topographischen Relief, konvektionsbedingtem Auftrieb, Sedimentkompaktion, isostatischen Ausgleichsbewegungen in Folge von Erosion und von Kombinationen dieser Kräfte gesteuert werden, können mit Hilfe quantitativ modellierender Techniken beschrieben werden. In diesen Modellen kann man die Auswirkungen des Transports von Wärme und gelösten Stoffen, Petroleum-Migration und die chemische Interaktion zwischen Wasser und dem grundwasserleitenden Gestein berücksichtigen.

Die Genauigkeit der Modell-Voraussagen ist allerdings begrenzt wegen der Schwierigkeit, hydrologische Eigenschaften von Sedimenten in einem regionalen Rahmen vorauszusagen, dem Schätzen vergangener Bedingungen und dem Problem der Abschätzung von Wechselwirkungen physikalischer und chemischer Prozesse in geologischen Zeiträumen. Fortschritte für das Modellieren von Becken werden mit der Integration hydrologischer Forschungsanstrengungen in benachbarte Fachebiete wie Sedimentologie, Gesteinsmechanik und Geochemie zunehmen.

Abstract

Groundwater flows that arise in sedimentary basins from the effects of topographic relief, buoyant convection, sediment compaction, erosional unloading, and combinations of these driving forces can be described using quantitative modeling techniques. Models can be constructed to consider the effects of heat and solute transport, petroleum migration, and the chemical interaction of water and rocks. The accuracy of model predictions, however, is limited by the difficulty of predicting hydrologic properties of sediments on regional dimensions, estimating past conditions such as topographic relief, and knowledge of how physical and chemical processes interact over gelogic time scales. Progress in basin modeling will accelerate as hydrologic research efforts are better integrated with those of other specialities such as sedimentology, rock mechanics, and geochemistry.

Résumé

Il est possible, par l'utilisation de techniques quantitatives de modélisation, de décrire les mouvements des eaux souterraines qui se manifestem dans les bassins sédimentaires, et qui résultent du relief topographique, de la convection, de la compaction des sédiments, de la décharge due à l'érosion et de la combinaison de ces divers facteurs. Dans ces modèles, on peut prendre en considération les effets des transferts de chaleur et de matières dissoutes lors de la migration du pétrole et ceux de l'interaction chimique de l'eau avec les roches. Toutefois la précision des prévisions que l'on peut en déduire est limitée par la difficulté d'estimer à l'echelle régionale les propriétés hydrologiques des sédiments, de reconstituer les conditions anciennes, et de connaître de quelle manière les processus physiques et chimiques interfèrent à l'échelle des temps géologiques. La modélisation des bassins progressera dans la mesure où la recherche hydrogéologique ser mieux intégrée à celles d'autres disciplines telles que la sédimentologie, la mécanique des roches et la géochimie.

Краткое содержание

С помощью модели реко нструировали миграц ию грунтовых вод в осадо чных бассейнах, прини мая во внимание топографию рельефа, возможности конвекции, плотность седиментн ых отложений, изостат ические движения в результат е эрозии, а также комби нацию всех этих факторов. Пр и разработке таких мо делей следует учитывать вл ияние высокой темпер атуры, переноса растворенн ых веществ, миграцию н ефти и химическое взаимод ействие между грунто выми водами и окружающими их породами. Само собой разумеетс я, точность прогнозов по таким моделям ограни чена из-за трудностей предсказания региональных гидрол огических свойств се диментов и из-за только приблиз ительной оценки, как предшевствующих вза имоотношений, так и взаимодействия физических и химичес ких процессов в течен ие геологического врем ени. Моделирование ба ссейнов обещает значительны й успех только при ком плексных исследованиях по гид рологии, седиментоло гии, механике пород и геох имии.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

A o :

Rate of oil generation within a sediment (kg/m3 s)

A r :

Rate of reaction of a groundwater per unit volume (moles/m3 s)

C :

Solute concentration in a groundwater (moles/m3 of water)

C eq :

Concentration of a solute at chemical equilibrium (moles/m3 of water)

C f :

Heat capacity of a groundwater Q/kg °C)

C r :

Heat capacity of the sediment grains Q/kg °C)

D lm :

Coefficient of dispersion along dimensionm resulting from flow alongl (m2/s)

D:

Dispersion tensor (m2/s)

g :

Acceleration of gravity (m/s2)

H :

Thickness of an aquifer (m)

k rxn :

Rate constant for a chemical reaction (s−1)

k l :

Intrinsic permeability of a sediment alongl (m2)

k ro :

Relative permeability of a sediment to oil

P :

Pressure on a groundwater (Pa)

P c :

Capillary pressure on an oil phase (Pa)

P o :

Pressure on an oil phase (Pa)

q l :

Specific discharge in an arbitrary directionl (m3 of water/m2 s)

q lo :

Specific discharge of an oil phase alongl (m3 of water/m2 s)

q:

Specific discharge vector (q x ,q y ,q z ) (m3 of water/m2 s)

R a :

Rayleigh number for a thermally stratified groundwater of constant composition

S o :

Oil saturation of a sediment, as a fraction of the pore volume

t :

Time (s)

T :

Temperature (°C)

v zm :

Velocity at which a sediment subsides relative to absolute elevation (m/s)

x, y :

Lateral distance (m)

z :

Depth relative to absolute elevation, such as sea level (m)

α :

Coefficient of thermal expansion for a groundwater (°C−1)

β :

Compressibility of a groundwater (Pa−1)

:

Gradient operator (∂/∂x, ∂/∂y, ∂/∂z)

:

Divergence operator (∂/∂x, ∂/∂y, ∂/∂z)

2 :

Laplacian operator ( 2/∂x 2, 2/y 2, 2/∂z 2)

χ :

Thermal conductivity of a fluid saturated sediment (J/m s °C)

μ :

Dynamic viscosity of a groundwater (kg/m s)

μ o :

Dynamic viscosity of an oil phase (kg/m s)

ϱ :

Groundwater density (kg/m3)

ϱ o :

Density of an oil phase (kg/m3)

ϱ r :

Density of the sediment grains (kg/m3)

φ:

Sediment porosity

Φ:

Hydraulic potential of a groundwater (Pa)

Φbdy :

Hydraulic potential along the water table (Pa)

Φc :

Hydraulic potential arising from sediment compaction (Pa)

Φt :

Hydraulic potential arising from topographic relief (Pa)

References

  • Anderson, M. P. (1984): Movement of contaminants in groundwater: Groundwater transport, advection and dispersion. - In: Studies in Geophysics: Groundwater Contamination, National Research Council, Washington, 37–45.

    Google Scholar 

  • Aziz, K., Bories, S. A. &Combarnous, M. A. (1973): The influence of natural convection in gas, oil and water reservoirs. - J. Can. Pet. Technol.,12, 41–47.

    Google Scholar 

  • Bear, J. (1972): Dynamics of fluids in porous media. - Elsevier, New York, 764 pp.

    Google Scholar 

  • — (1979): Hydraulics of groundwater. - McGraw Hill, New York, 569 pp.

    Google Scholar 

  • Begg, S. H. &Carter, R. R. (1987): Assigning effective values to simulator grid-block parameters for heterogeneous reservoirs. - Soc. Pet. Eng. Paper16754, p. 601–611.

    Google Scholar 

  • — &King, P. R. (1985): Modelling the effects of shales on reservoir performance: calculation of effective vertical permeability. - Soc. Pet. Eng. Paper13529, p. 31–338.

    Google Scholar 

  • Bethke, C. M. (1985): A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. - J. Geophys. Res.,90, 6817–6828.

    Google Scholar 

  • — (1986a): Hydrologic constraints on the genesis of the Upper Mississippi Valley mineral district from Illinois basin brines. - Econ. Geol.,81, 233–249.

    Google Scholar 

  • — (1986b): Inverse hydrologic analysis of the distribution and origin of Gulf Coast-type geopressured zones.- J. Geophys. Res.,91, 6535–6545.

    Google Scholar 

  • — &Corbet, T. F. (1988): Linear and nonlinear solutions for onedimensional compaction flow in sedimentary basins. - Water Resour. Res.,24, 461–467.

    Google Scholar 

  • —,Harrison, W. J., Upson, C. &Altaner, S. P. (1988): Supercomputer analysis of sedimentary basins. - Science,239, 261–267.

    Google Scholar 

  • Bjorlykke, K. (1984): Formation of secondary porosity: How important is it? - In: MacDonald, D. A. & Surdam, R. C. (eds.) Clastic Diagenesis, Amer. Assoc. Pet. Geol., Tulsa, 277–286.

    Google Scholar 

  • Blackwell, R. J. Rayne, J. R. &Terry, W. M. (1959): Factors influencing the efficiency of miscible displacement. - Trans. Soc. Pet. Eng. AIME,216, 1–8.

    Google Scholar 

  • Blanchard, P. E. &Sharp, J. M., Jr. (1985): Possible free convection in thick Gulf Coast sandstone sequences. - Trans. Southwest Section Am. Assoc. Pet. Geol., 6–12.

  • Bodner, D. P., Blanchard, P. E. &Sharp, J. M., Jr. (1985): Variations in Gulf Coast heat flow created by groundwater flow. - Gulf Coast Assoc. Geol. Soc. Trans.,35, 19–28.

    Google Scholar 

  • Bradley, J. S. (1985): Safe disposal of toxic radioactive liquid wastes. - Geology,13, 328–329.

    Google Scholar 

  • Bredehoeft, J. D. &Hanshaw, B. B. (1968): On the maintenance of anomalous fluid pressures, I., thick sedimenary sequences. - Geol. Soc. Amer. Bull.,79, 1097–1106.

    Google Scholar 

  • —,Djevanshir, R. D. &Beltiz, K. R. (1988): Lateral fluid flow in a compacting sand-shale sequence: south Caspian basin. - Am. Assoc. Pet. Geol. Bull.,72, 416–424.

    Google Scholar 

  • —,Neuzll, C. E. &Milly, P. C. D. (1983): Regional flow in the Dakota aquifer: a study of the role of confining layers. - U. S. Geol. Surv. Water Supply Paper,2237, 1–45.

    Google Scholar 

  • —,Blyth, C. R., White, W. A. &Mayey, G. B. (1963): Possible mechanism for concentration of brines in subsurface formations. - Am. Assoc. Pet. Geol. Bull.,47, 257–269.

    Google Scholar 

  • Carpenter, A. B. Trout, M. L. &Pickett, E. E. (1974): Preliminary report on the origin and chemical evolution of lead- and zinc-rich oil field brines in central Mississippi. - Econ. Geol.,69, 1191–1206.

    Google Scholar 

  • Chuoke, R. L., van Meurs, P. &van der Poel, C. (1959): The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. - Trans. Soc. Pet. Eng. AIME,216, 188–194.

    Google Scholar 

  • Clayton, J. L. &Swetland, P. J. (1980): Petroleum generation and migration in Denver basin. - Am. Assoc. Pet. Geol. Bull.,64, 1613–1633.

    Google Scholar 

  • Clayton, R. N., Friedman, I., Graf, D. L., Mayeda, T. K. Meents, W. F. &Shimp, N. F. (1966): The origin of saline formation waters 1. Isotopic composition. - J. Geophys. Res.,71, 3869–3882.

    Google Scholar 

  • Coats, K. R., Nielsen, R. L., Terhune, M. H. &Weber, A. G. (1967): Simulation of three-dimensional, twophase flow in oil and gas reservoirs. - Soc. Petr. Eng. J.,7, 377–388.

    Google Scholar 

  • Combarnous, M. H. &Bories, S. A. (1975): Hydrothermal convection in saturated porous media. - Adv. Hydrosci.,10, 231–307.

    Google Scholar 

  • Darton, H. H. (1909): Geology and underground waters of South Dakota. - U. S. Geol. Surv. Water Supply Pap.,227, 156 pp.

  • Davis, R. W. (1987): Analysis of hydrodynamic factors in petroleum migration and entrapment. - Am. Assoc. Pet. Geol. Bull.,71, 643–649.

    Google Scholar 

  • Davis, S. H., Rosenblat, S., Wood, J. R. &Hewitt, T. A. (1985): Convective fluid flow & diagenetic patterns in domed sheets. - Am. J. Sci.,285, 207–223.

    Google Scholar 

  • Dickey, P. A., George, G. O. &Barker, C. (1987): Relationships among oils and water compositions in Niger delta. - Am. Assoc. Pet. Geol. Bull.,71, 1319–1328.

    Google Scholar 

  • Dickinson, G. (1953): Geologic aspects of abnormal reservoir pressures in Gulf Coast Louisiana. - Am. Assoc. Pet. Geol. Bull.,37, 410–432.

    Google Scholar 

  • Doligez, B., Bessis, E., Burrus, J., Ungerer, P. &Chenet, P. Y. (1986): Integrated numerical simulation of the sedimentation, heat transfer, hydrocarbon formation and fluid migration in a sedimentary basin: the Themis model. - In: Burrus, J. (ed.), Thermal modeling in sedimentary basins, Editions Technip, Paris, p. 173–195.

    Google Scholar 

  • Domenico, P. A. &Palciauskas, V. V. (1973): Theoretical analysis of forced convective heat transfer in regional ground-water flow. - Geol. Soc. Am. Bull.,84, 3803–3814.

    Google Scholar 

  • — &Palciauskas, V. V. (1979): Thermal expansion of fluid and fracture initiation in compacting sediments: Summary. - Geol. Soc. Am. Bull.,90, 518–520.

    Google Scholar 

  • — &Robbins, G. A. (1985): The displacement of connate water from aquifers. - Geol. Soc. Am. Bull.,96, 328–335.

    Google Scholar 

  • Dow, W. G. (1974): Application of oil-correlation and source-rock data to exploration in Williston basin. - Am. Assoc. Geol. Bull.,58, 1253–1262.

    Google Scholar 

  • Doyle, M., Lawrence, D., Snelson, S. &Horsfield, W. (1988): Computer simulation of basin stratigraphy (abs.). - Terra Cognita,8, 21.

    Google Scholar 

  • England, W. A., Mackenzie, A. S., Mann, D. M. &Quigley, T. M. (1987): The movement and entrapment of petroleum fluids in the subsurface. - J. Geol. Soc. Lond.,144, 327- 347.

    Google Scholar 

  • Eslinger, E. V.,Savin, S. M. &Yeh, H.-W. (1979): Oxygen isotope geothermometry of diagenetically altered shales. - In: Scholle, P. A. & Schluger, P. R. (eds.) Aspects of Diagenesis, Soc. Econ. Paleont. Mineral. Spec. Pub.,26, 113–124.

  • Essaid, H. I. (1988): A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: Model application. - Water Resourc. Res., submitted.

  • Fogg, G. E. (1986): Groundwater flow and sand body interconnectedness in a thick multiple aquifer system. - Water Resour. Res.,22, 679–694.

    Google Scholar 

  • Freeze, R. A. &Witherspoon, P. A. (1966): Theoretical analysis of regional groundwater flow, 1., analytical and numerical solutions to the mathematical model. - Water Resour. Res.,2, 641–656.

    Google Scholar 

  • — &Witherspoon, P. A. (1967): Theoretical analysis of regional groundwater flow, 2., Effect of water-table configuration and subsurface permeability variation. - Water Resour. Res.,3, 623–634.

    Google Scholar 

  • Galloway, W. E. (1979): Diagenetic control of reservoir quality in arc-derived sandstones: implications for petroleum exploration. - In: Scholle, P. A. & Schluger, P. R. (eds.) Aspects of Diagenesis, Soc. Econ. Paleont. Mineral. Spec. Pub.,26, 251–262.

  • - (1984): Hydrogeologic regimes of sandstone diagenesis. - In: MacDonald, D. A. & Surdam, R. C. (eds.) Clastic Diagenesis, Am. Assoc. Pet. Geol. Memoirs,37, 3–13.

  • Garven, G. (1985): The role of regional fluid flow in the genesis of the Pine Point deposit, Western Canada sedimentary basin.- Econ. Geol.,80, 307–324.

    Google Scholar 

  • — (1986): The role of regional fluid flow in the genesis of the Pine Point deposit, Western Canada sedimentary basin — a reply. - Econ. Geol.,81, 1015–1020.

    Google Scholar 

  • - (1988): A hydrogeologic model for the formation of the giant oil sands deposits of the Western Canada Sedimen- tary Basin. - Am. J. Sci., in press.

  • — &Freeze, R. A. (1984a): Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits, 1. Mathematical and numerical model. - Am. J. Sci.,284, 1085–1124.

    Google Scholar 

  • — — (1984b): Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits, 2. Quantitative results. - Am. J. Sci.,284, 1125–1174.

    Google Scholar 

  • Gibson, R. E. (1958): The progress of consolidation in a clay layer increasing in thickness with time. - Geotechnique,8, 171–182.

    Google Scholar 

  • Graf, D. L. (1982): Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. - Geochim. Cosmochim. Acta,46, 1431–1448.

    Google Scholar 

  • Haldorsen, H. H. (1986): Simulator parameter assignment and the problem of scale in reservoir engineering. - In: Lake, L. W. & Carroll, H. B., Jr. (eds.), Reservoir Characterization, Academic Press, New York, 293–340.

    Google Scholar 

  • Haq, B. U., Hardenbol, J. &Vail, P. R. (1987): Chronology of fluctuating sea levels since the Triassic. - Science,235, 1156–1167.

    Google Scholar 

  • Hanor, J. S. (1987a): Kilometre-scale thermohaline overturn of pore waters in the Louisiana Gulf Coast. - Nature,327, 501–503.

    Google Scholar 

  • — (1987b): History of thought on the origin of subsurface sedimentary brines. - History of Geophysics, American Geophysical Union,3, 81–91.

    Google Scholar 

  • Harrison, W. J. &Bethke, C. M. (1986): Paleohydrologic analysis of interacting meteoric and compactional flow regimes in the U. S. Gulf Coast (abs.). - Geol. Soc. Am. Abstr. Programs,18, 630.

    Google Scholar 

  • Hay, R. L. (1966): Zeolites and zeolitic reactions in sedimentary rocks. - Geol. Soc. Am. Spec. Pag.85, 130 pp.

  • Hearn, P. P., Jr.,Sutter, J. F. &Belkin, H. E. (1987): Evidence for late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization. - Geochim. Cosmochim. Acta,51, 1323–1334.

    Google Scholar 

  • Helgeson, H. C., Brown, T. H., Nigrini, A. &Jones, T. A. (1970): Calculation of mass transfer in geochemical processes involving aqueous solutions. - Geochim. Cosmochim. Acta,34, 569–592.

    Google Scholar 

  • Hill, S. (1952): Channeling in packed columns. - Chem. Eng. Sci.,1, 247–253.

    Google Scholar 

  • Hitchon, B. (1984): Geothermal gradients, hydrodynamics, and hydrocarbon occurrences, Alberta, Canada. - Am. Assoc. Pet. Geol. Bull.,68, 713–743.

    Google Scholar 

  • Hubbert, M. K. (1940): The theory of ground-water motion. - J. Geol.,48, 785–944.

    Google Scholar 

  • — (1953): Entrapment of petroleum under hydrodynamic conditions. - Am. Assoc. Pet. Geol. Bull.,37, 1954–2026.

    Google Scholar 

  • Jennings, J. B. (1987): Capillary pressure techniques: Application to exploration and development geology. - Am. Assoc. Pet. Geol. Bull.,71, 1196–1209.

    Google Scholar 

  • Keen, C. E. (1983): Salt diapirs and thermal maturity: Scotian basin. - Bull. Can. Pet. Geol.,31, 101–108.

    Google Scholar 

  • Kiraly, L. (1975): Rapport sur l'ètat actuel des connaissances dans le domaine des caractères physiques des roches karstiques. - Int. Union Geol. Sci., Ser. B.,3, 53–67.

    Google Scholar 

  • Land, L. S. &Dutton, S. P. (1979): Reply: cementation of sandstones. - J. Sed. Petrol.,49, 1359–1361.

    Google Scholar 

  • — &Prezbindowski, D. R. (1981): The origin and evolution of saline formation water, Lower Cretaceous carbonates, south-central Texas. - J. Hydrol.,54, 51–74.

    Google Scholar 

  • Lapwood, E. R.: (1984): Convection of a fluid in a porous medium. - Prc. Cambridge Phil. Soc.,44, 508–521.

    Google Scholar 

  • Lehner, F. K., Marsal, D., Hermans, L., &van Kuyk, A. (1987): A model of secondary hydrocarbon migration as a buoyancy-driven separate phase flow. - In: Doligez, B. (ed.), Migration of Hydrocarbons in Sedimentary Basins, Editions Technip, Paris, 457–471.

    Google Scholar 

  • Levandowski, D. W., Kaley, M. E., Silverman, S. R. &Smalley, R. G. (1973): Cementation in the Lyons sandstone and its role in oil accumulation, Denver basin, Colorado. - Amer. Assoc. Pet. Geol. Bull.,57, 2217–2244.

    Google Scholar 

  • Lewan, M. D. (1985): Evaluation of petroleum generation by hydrous pyrolysis experimentation. - Philos. Trans. R. Soc. London, A.,315, 123–134.

    Google Scholar 

  • Lichtner, P. C. (1985): Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems.- Geochim. Cosmochim. Acta,49, 779–800.

    Google Scholar 

  • — (1988): The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. - Geochim. Cosmochim. Acta,52, 143–165.

    Google Scholar 

  • Marcher, M. V. &Stearns, R. G. (1962): Tuscaloosa formtion in Tennessee. - Geol. Soc. Am. Bull.,73, 1365–1386.

    Google Scholar 

  • Matheron, G. &de Marsily, G. (1980): Is transport in porous media always diffusive? A counterexample.- Water Resour. Res.,16, 901–917.

    Google Scholar 

  • McCabe, C., Van der Voo, R., Peacor, D. R., Scotese, C. R. &Ffreeman, R. (1983): Diagenetic magnetite carries ancient yet secondary remanence in some Paleozoic sedimentary carbonates. - Geology,11, 221–223.

    Google Scholar 

  • Meisler, H.,Leahy, P. P. &Knobel, L. L. (1985): Effect of eustatic sea-level changes on saltwater-freshwater relations in the northern Atlantic coastal plain. - U. S. Geol. Surv. Water-Supply Pap.,2255, 28 pp.

  • Mercer, J. W., Pinder, G. F. &Donaldson, I. G. (1975): a system at Wairakei, New Zealand.- J. Geophys. Res.,80, 2608–2621.

    Google Scholar 

  • Naeser, C. W. (1979): Thermal history of sedimentary basins: fission-track dating of subsurface rocks. - In: Scholle, P. A. & Schluger, P. R. (eds.) Aspects of Diagenesis, Soc. Econ. Paleont. Mineral. Spec. Pub.,26, 109–112.

  • Neuzil, C. E. (1986): Groundwater flow in low-permeability environments. - Water Resour. Res.,22, 1163–1195.

    Google Scholar 

  • — &Pollock, D. W. (1983): Erosional unloading and fluid pressures in hydraulically tight rocks. - J. Geol.,91, 179- 193.

    Google Scholar 

  • Nield, D. A. (1968): Onset of thermohaline convection in a porous medium. - Water Resour. Res.,4, 553–560.

    Google Scholar 

  • Nunn, J. A. &Sassen, R. (1986): The framework of hydrocarbon generation and migration, Gulf of Mexico continental slope. - Gulf Coast Assoc. Geol. Soc. Trans.,36, 257–262.

    Google Scholar 

  • Ohle, E. L. (1951): The influence of permeability on ore distribution in limestone and dolomite. - Econ. Geol.,46, 667–706.

    Google Scholar 

  • — (1980): Some considerations in determining the origin of ore deposits of the Mississippi Valley type, Part II. - Econ. Geol.,75, 161–172.

    Google Scholar 

  • Palciauskas, V. V. &Domenico, P. A. (1976): Solution chemistry, mass transfer, and the approach to chemical equilibrium in porous carbonate rocks and sediments. - Geol. Soc. Am. Bull.,87, 207–214.

    Google Scholar 

  • Peaceman, D. W. (1977): Fundamentals of numerical reservoir simulation. - Elsevier, New York, 176 pp.

    Google Scholar 

  • — &Rachford, H. H. (1962): Numerical calculation of multidimensional miscible displacement. - Soc. Petr. Eng. J.,2, 328–339.

    Google Scholar 

  • Pearson, F. J. &White, D. E. (1967): Carbon 14 ages and flow rates of water in Carrizo sand, Atascosa County, Texas. - Water Resour. Res.,3, 251–261.

    Google Scholar 

  • Philip, J. R. (1982): Free convection at small Rayleigh number in porous cavities of rectangular, elliptical, triangular, and other cross sections. - Int. J. Heat Mass Transfer,25, 1503- 1509.

    Google Scholar 

  • Prats, M. (1966): The effect of horizontal fluid flow on thermally induced convection currents in porous mediums. - J. Geophys. Res.,71, 4835–4838.

    Google Scholar 

  • Rabinowicz, M., Dandurand, J.-L., Jakubowski, M., Schott, J. &Cassan, J.-P. (1985): Convection in a North Sea oil reservoir: inferences on diagenesis and hydrocarbon migration. - Earth Planet. Sci. Lett.,74, 387–404.

    Google Scholar 

  • Ranganathan, V. &Hanor, J. S. (1987): A numerical model for the formation of saline waters due to diffusion of dissolved NaCl in subsiding sedimentary basins with evaporites. - J. Hydrol.,92, 97–120.

    Google Scholar 

  • Rubin, H. (1974): Heat dispersion effect on thermal convection in a porous medium layer. - J. Hydrol.,21, 173–185.

    Google Scholar 

  • Sanford, R. F. (1982): Preliminary model of regional Mesozoic groundwater flow and uranium deposition in the Colorado plateau.- Geology,10, 348–352.

    Google Scholar 

  • Senger, R. K. &Fogg, G. E. (1987): Regional underpressuring in deep brine aquifers, Palo Duro basin, Texas, 1., Effects of hydrostratigraphy and topography. - Water Resour. Res.,23, 1481–1493.

    Google Scholar 

  • —,Kreitler, C. W. &Fogg, G. E. (1987): Regional underpressuring in deep brine aquifers, Palo Duro basin, Texas, 2., The effect of Cenozoic basin development. - Water Resour. Res.,23, 1494–1504.

    Google Scholar 

  • Sibley, D. F. &Blatt, H. (1976): Intergranular pressure solution and cementation of the Tuscarora orthoquartzite, J. Sed. Petrol.,46, 881–896.

    Google Scholar 

  • Silliman, S. E., Konikow, L. F. &Voss, C. I. (1987): Labortory investigation of longitudinal dispersion in anisotropic porous media. - Water Resour. Res.,23, 2145–2151.

    Google Scholar 

  • Smith, L. &Schwartz, F. W. (1984): An analysis of the influence of fracture geometry on mass transport in fractured media. - Water Resour. Res.,20, 1241–1252.

    Google Scholar 

  • Sverjensky, D. A. (1986): Genesis of Mississippi Valley-type lead-zinc deposits. - Ann. Rev. Earth Planet. Sci.,14, 177–199.

    Google Scholar 

  • Tetzlaff, D. M. (1988): SEDSIM: a simulation model of clastic sedimentary processes. - Ph. D. Diss., Stanford University, in prep.

  • Tissot, B. P. &Welte, D. H. (1984): Petroleum formation and occurrence, 2nd. ed. - Springer-Verlag, Berlin, 699 pp.

    Google Scholar 

  • Töth, J. (1962): A theory of groundwater motion in small basins in central Alberta, Canada. - J. Geophys. Res.,67, 4375–4387.

    Google Scholar 

  • — (1963): A theoretical analysis of groundwater flow in small drainage basins. - J. Geophys. Res.,68, 4795–4812.

    Google Scholar 

  • — (1978): Gravity-induced cross-formational flow of formation fluids, Red Earth region, Alberta, Canada: Analysis, patterns, evolution. - Water Resour. Res.,14, 805–843.

    Google Scholar 

  • — &Corbet, T. (1986): Post-paleocene evolution of regional groundwater flow systems and their relation to petroleum accumulations, Taber area, southern Alberta, Canada. - Bull. Can. Pet. Geol.,34, 339–363.

    Google Scholar 

  • — &Millar, R. F. (1983): Possible effects of erosional changes of the topographic relief on pore pressures at depth. - Water Resour. Res.,19, 1585–1597.

    Google Scholar 

  • Ungerer, P., Behar, F. &Discamps, D. (1981): Tentative calculation of the overall volume expansion of organic matter during hydrocarbon genesis from geochemistry data. Implications for primary migration. - In: Advances in Organic Geochemistry, John Wiley, New York, 129–135.

    Google Scholar 

  • —,Chenet, P. Y., Moretti, I., Chiarelli, A. &Oudin, J. L. (1986): Modeling oil formation and migration in the southern part of the Suez rift, Egypt. - Org. Geochem.,10, 247–260.

    Google Scholar 

  • —,Doligez, B., Chenet, P. Y., Burrus, J., Bessis, F., Lafargue, E., Giroir, G., Heum, O. &Eggen, S. (1987): A 2-D model of basin scale petroleum migration by two-phase fluid flow: Application to some case studies. - In: Doligez, B. (ed.), Migration of Hydrocarbons in Sedimentary Basins, Editions Technip, Paris, 415–456.

    Google Scholar 

  • Waldschmidt, W. A. (1941): Cementing materials in sandstones and their probable influence on migration and accumulation of oil and gas. - Amer. Assoc. Pet. Geol. Bull.,25, 1839–1879.

    Google Scholar 

  • Weber, K. J. (1982): Influence of common sedimentary structures on fluid flow in reservoir models. - J. Pet. Technol.,34, 665–672.

    Google Scholar 

  • - (1986): How heterogeneity affects oil recovery. - In: Lake, L. W. & Carroll, H. B., Jr. (eds.), Reservoir Characterization, Academic Press, pp. 487–544.

  • Wheatcraft, S. W. &Tyler, S. W. (1988): An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. - Water Resour. Res.,24, 566–578.

    Google Scholar 

  • Willet, S. D. &Chapman, D. S. (1987): Temperatures, fluid flow and the thermal history of the Uinta basin.- In: Doligez, B. (ed.), Migration of Hydrocarbons in Sedimentary Basins, Editions Technip, Paris, 533–551.

    Google Scholar 

  • Wood, J. R. (1986): Thermal mass transfer in systems containing quartz and calcite. - In: Gautier, D. L. (ed.), Roles of Organic Matter in Sediment Diagenesis, Soc. Econ. Paleontol. Mineral. Spec. Publ.38, 169–180.

  • — &Hewett, T. A. (1982): Fluid convection and mass transfer in porous sandstones, a theoretical approach. - Geochim. Cosmochim. Acta,46, 1707–1713.

    Google Scholar 

  • - &Hewett, T. A. (1984): Reservoir diagenesis and convective fluid flow. - In: McDonald, D. A. and Surdam, R. C. (eck), Clastic Diagenesis, Am. Assoc. Pet. Geol. Memoir,37, p. 99–110.

  • - &Hewett, T. A. (1986): Forced fluid flow and diagenesis in porous reservoirs — controls on the spatial distribution. - In: Gautier, D. L. (ed.), Roles of Organic Matter in Sediment Diagenesis, Soc. Econ. Paleontol. Mineral. Spec. Publ.38, 181–187.

  • - &Surdam, R. C. (1979): Application of convective-diffusion models to diagenetic processes. - In: Scholle, P. A. & Schluger, P. R. (eds.) Aspects of Diagenesis, Soc. Econ. Paleont. Mineral. Spec. Pub.,26, 243–250.

  • Woodbury, A. D. &Smith, L. (1987): Simultaneous inversion of hydrogeologic and thermal data, 1, theory and application using hydraulic head data. - Water Resour. Res.,23, 1586–1606.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bethke, C.M. Modeling subsurface flow in sedimentary basins. Geol Rundsch 78, 129–154 (1989). https://doi.org/10.1007/BF01988357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01988357

Keywords

Navigation