Skip to main content
Log in

Vacuolar H+-ATPase: From mammals to yeast and back

  • Milti-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Vacuolar H+-adenosine triphosphatase (V-ATPase) is composed of distinct catalytic (V1) and membrane (V0) sectors containing several subunits. The biochemistry of the enzyme was mainly studied in organelles from mammalian cells such as chromaffin granules and clathrin-coated vesicles. Subsequently, mammalian cDNAs and yeast genes encoding subunits of V-ATPase were cloned and sequenced. The sequence information revealed the relation between V- and F-ATPases that evolved from a common ancestor. The isolation of yeast genes encoding subunits of V-ATPase opened an avenue for molecular biology studies of the enzyme. Because V-ATPase is present in every known eukaryotic cell and provides energy for vital transport systems, it was anticipated that disruption of genes encoding V-ATPase subunits would be lethal. Fortunately, yeast cells can survive the absence of V-ATPase by ‘drinking’ the acidic medium. So far only yeast cells have been shown to be viable without an active V-ATPase. In contrast to yeast, mammalian cells may have more than one gene encoding each of the subunits of the enzyme. Some of these genes encode tissue- and/or organelle-specific subunits. Expression of these specific cDNAs in yeast cells may reveal their unique functions in mammalian cells. Following the route from mammals to yeast and back may prove useful in the study of many other complicated processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harvey W. R. and Nelson N. (1992) V-ATPases, Cambridge, The Company of Biologists Limited

    Google Scholar 

  2. Mellman I., Fuchs R. and Helenius A. (1986) Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem.55: 663–700

    PubMed  Google Scholar 

  3. Bowman B. J. and Bowman E. J. (1986) H+-ATPases from mitochondria, plasma membranes and vacuoles of fungal cells. J. Membr. Biol.94: 83–97

    Article  PubMed  Google Scholar 

  4. Nelson N. (1989) Structure, molecular genetics and evolution of vacuolar H+-ATPases. J. Bioenerg. Biomembr.21: 553–571

    Article  Google Scholar 

  5. Nelson N. (1992) Evolution of organellar proton-ATPases. Biochim. Biophys. Acta1100: 109–124

    PubMed  Google Scholar 

  6. Klionsky D. J., Herman P. K. and Emr S. D. (1990) The fungal vacuole: composition, function and biogenesis. Microbiol. Rev.54: 266–292

    PubMed  Google Scholar 

  7. Cunningham K. W. and Fink G. R. (1996) Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases inSaccharomyces cerevisiae. Mol. Cell Biol.16: 2226–2237

    PubMed  Google Scholar 

  8. Cunningham K. W. and Fink G. R. (1994) Calcineurin-dependent growth control inSaccharomyces cerevisiae mutants lackingPMC1. J. Cell Biol.124: 351–363

    PubMed  Google Scholar 

  9. Cunningham K. W. and Fink G. R. (1994) Ca2+ transport inSaccharomyces cerevisiae. J. Exp. Biol.196: 157–166

    PubMed  Google Scholar 

  10. Banta L. M., Robinsin J. S., Klionsky D. J. and Emr S. D. (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J. Cell Biol.107: 1369–1383

    Article  PubMed  Google Scholar 

  11. Klionsky D. J., Nelson H. and Nelson N. (1992) Compartment acidification is required for efficient sorting of proteins to the vacuole inSaccharomyces cereviseae. J. Biol. Chem.267: 3416–3422

    PubMed  Google Scholar 

  12. Yaver D. S., Nelson H., Nelson N. and Klionsky D. J. (1993) Vacuolar ATPase mutants accumulate precursor proteins in a pre-vacuolar compartment. J. Biol. Chem.268: 10564–10572

    PubMed  Google Scholar 

  13. Morano K. A. and Klionsky D. J. (1994) Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J. Cell Sci.107: 2813–2824

    PubMed  Google Scholar 

  14. Gluck S. (1992) V-ATPases of the plasma membrane. J. Exp. Biol.172: 29–37

    PubMed  Google Scholar 

  15. Gluck S. and Nelson R. (1992) The role of the V-ATPase in renal epithelial H+ transport. J. Exp. Biol.172: 205–218

    PubMed  Google Scholar 

  16. Gluck S. L. (1992) The structure and biochemistry of the vacuolar H+ ATPase in proximal and distal urinary acidification. J. Bioenerg. Biomembr.24: 351–359

    Article  PubMed  Google Scholar 

  17. Vaes G. (1988) Cellular biology and biochemical mechanism of bone resorption. Clin. Orthop.231: 239–271

    PubMed  Google Scholar 

  18. Blair H. C., Teitelbaum S. L., Ghiselli R. and Gluck S. (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science245: 855–857.

    PubMed  Google Scholar 

  19. Arnett T. R. and Dempster D.W. (1986) The effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology119: 119–124

    PubMed  Google Scholar 

  20. Chatterjee D., Chakraborty M., Leit M., Neff L., Samsa-Kellokumpu S., Fuchs R. et al. (1992) Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton-pump from other vacuolar H+-ATPases. Proc. Natl. Acad. Sci. USA89: 6257–6291

    PubMed  Google Scholar 

  21. Chatterjee D., Neff, L., Chakraborty M., Fabricant C. and Baron R. (1993) Sensitivity to nitrate and other oxyanions further distinguishes the vanadate-sensitive osteoclast proton pump from other vacuolar H+-ATPases. Biochemistry32: 2808–2812

    Article  PubMed  Google Scholar 

  22. David P. and Baron R. (1994) The catalytic cycle of the vacuolar H+-ATPase: comparison of proton transport in kidney- and osteoclast-derived vesicles. J. Biol. Chem.269: 30158–30163

    PubMed  Google Scholar 

  23. Vaananen H. K., Karhukorpi E. K., Sundquist K., Wallmark B., Roininen I., Hentunen T. et al. (1990) Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the rulffled border of osteoclasts. J. Cell Biol.111: 1305–1311

    Article  PubMed  Google Scholar 

  24. Cidon, N. and Nelson N. (1986) Purification ofN-ethylmaleimide-sensitive ATPase from chromaffin granule membranes. J. Biol. Chem.261: 9222–9227

    PubMed  Google Scholar 

  25. Percy J. M. and Apps D. K. (1986) Proton-translocating adenosine triphosphatase of chromaffin-granule membranes, the active site is in the largest (70 kDa) subunit. Biochem. J.239: 77–81

    PubMed  Google Scholar 

  26. Moriyama Y. and Nelson N. (1987) The purified ATPase from chromaffin granule membranes is an anion-dependent proton pump. J. Biol. Chem.262: 9175–9180

    PubMed  Google Scholar 

  27. Gluck S. and Caldwell J. (1987) Immunoaffinity purification and characterization of vacuolar H+-ATPase from bovine kidney. J. Biol. Chem.262: 15780–15789

    PubMed  Google Scholar 

  28. Arai H., Berne M., Terres G., Terres H., Puopolo K. and Forgac M. (1987) Subunit composition and ATP site labeling of the coated vesicle proton- translocating adenosinetriphosphatase. Biochemistry26: 6632–6638

    Article  PubMed  Google Scholar 

  29. Xie X.-S. and Stone D. K. (1986) Isolation and reconstitution of the clathrin-coated vesicles proton translocating ATPase complex. J. Biol. Chem.261: 2492–2495

    PubMed  Google Scholar 

  30. Xie X.-S. and Stone D. K. (1988) Partial resolution and reconstitution of the subunits of the clathrin-coated vesicle proton ATPase responsible for Ca2+-activated ATP hydrolysis. J. Biol. Chem.263: 9859–9867

    PubMed  Google Scholar 

  31. Boyer P. D. (1993). The binding change mechanism for ATP synthase: some probabilities and possibilities. Biochim. Biophys. Acta1140: 215–250

    PubMed  Google Scholar 

  32. Kane P. M., Yamashiro C. T. and Stevens T. H. (1989) Biochemical characterization of the yeast vacuolar H+-ATPase. J. Biol. Chem.264: 19236–19244

    PubMed  Google Scholar 

  33. Umemoto N., Ohya Y. and Anraku Y. (1991)VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H+-ATPase activity. J. Biol. Chem.266: 24526–24532

    PubMed  Google Scholar 

  34. Hirata R., Umemoto N., Ho M. N., Ohya Y., Stevens T. H. and Anraku, Y. (1993)VMA12 is essential for assembly of the vacuolar H+-ATPase subunits onto the vacuolar membrane inSaccharomyces cerevisiae. J. Biol. Chem.268: 961–967

    PubMed  Google Scholar 

  35. Ho M. N., Hirata R., Umemoto N., Ohya Y., Takatsuki A., Stevens T. H. et al. (1993)VMA13 encodes a 54-kDa vacuolar H+-ATPase subunit required for activity but not assembly of the enzyme complex inSaccharomyces cerevisiae. J. Biol. Chem.268: 18286–18292

    PubMed  Google Scholar 

  36. Hill K. J. and Stevens T. H. (1994) Vma 21p is a yeast membrane protein retained in the endoplasmic reticulum by a Di-lysine motif and is required for the assembly of the vacuolar H+-ATPase complex. Molecular Biology of the Cell5: 1039–1050

    PubMed  Google Scholar 

  37. Hirata R., Ohsumi Y., Nakano A., Kawasaki H., Suzuki K. and Anraku Y. (1990) Molecular structure of a gene,VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes ofSaccharomyces cerevisiae. J. Biol. Chem.265: 6726–6733

    PubMed  Google Scholar 

  38. Nelson H., Mandiyan S. and Nelson N. (1989) A conserved gene encoding the 57 kDa subunit of the yeast vacuolar H+-ATPase. J. Biol. Chem.264: 1775–1778

    PubMed  Google Scholar 

  39. Puopolo K., Kumamoto C., Adachi I., Magner R. and Forgac M. (1992) Differential expression of the “B” subunit of the vacuolar H+-ATPase in bovine tissues. J. Biol. Chem.267: 3696–3706

    PubMed  Google Scholar 

  40. Nelson H. and Nelson N. (1989) The progenitor of ATP synthases was closely related to the current vacuolar H+-ATPase. FEBS Lett.247: 147–153

    Article  PubMed  Google Scholar 

  41. Umemoto N., Yoshihisa T., Hirata R. and Anraku Y. (1990) Roles of theVMA3 gene product, subunitc of the vacuolar membrane H+-ATPase on vacuolar acidification and protein transport. J. Biol. Chem.265: 18447–18453

    PubMed  Google Scholar 

  42. Foury F. (1990) The 31-kDa polypeptide is an essential subunit of the vacuolar ATPase inSaccharomyces cerevisiae. J. Biol. Chem.265: 18554–18560

    PubMed  Google Scholar 

  43. Beltrán C., Kopecky J., Pan Y.-C. E., Nelson H. and Nelson N. (1992) Cloning and mutational analysis of the gene encoding subunit C of yeast V-ATPase. J. Biol. Chem.267: 774–779

    PubMed  Google Scholar 

  44. Bauerle C., Ho M. N., Lindorfer M. A. and Stevens T. H. (1993) TheSaccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H+-ATPase membrane sector. J. Biol. Chem.268: 12749–12757

    PubMed  Google Scholar 

  45. Nelson H., Mandiyan S. and Nelson N. (1994) TheSaccharomyces cerevisiae VMA7 gene encodes a 14-kDa subunit of the vacuolar H+-ATPase catalytic sector. J. Biol. Chem.269: 24150–24155

    PubMed  Google Scholar 

  46. Graham L. A., Hill K. J. and Stevens T. H. (1994)VMA7 encodes a novel 14-kDa subunit of theSaccharomyces cerevisiae vacuolar H+-ATPase complex. J. Biol. Chem.269: 25974–25977

    PubMed  Google Scholar 

  47. Nelson H., Mandiyan S. and Nelson N. (1995) A bovine cDNA and a yeast gene-VMA8 encoding subunit D of the vacuolar H+-ATPase. Proc. Natl. Acad. Sci. USA92: 497–501

    PubMed  Google Scholar 

  48. Graham L. A., Hill K. J. and Stivens T. H. (1995)VMA8 encodes a 32-kDa V1 subunit of theSaccharomyce cerevisiae vacuolar H+-ATPase required for function and assembly of the enzyme complex. J. Biol. Chem.270: 15037–15044

    Article  PubMed  Google Scholar 

  49. Supekova L., Supek F. and Nelson N. (1995) TheSaccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H+-ATPase. J. Biol. Chem.270: 13726–13732

    Article  PubMed  Google Scholar 

  50. Manolson M. F., Proteau D., Preston R. A., Stenbit A., Roberts T., Hoyt M. et al. (1992) TheVPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H+-ATPase. J. Biol. Chem.267: 14294–14303

    PubMed  Google Scholar 

  51. Manolson M. F., Wu B., Proteau D., Taillon B. E., Roberts B. T., Hoyt M. A. et al. (1994)STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit Vph1p. J. Biol. Chem.269: 14064–14074

    PubMed  Google Scholar 

  52. Moriyama Y. and Nelson N. (1989) Cold inactivation of vacuolar H+-ATPases. J. Biol. Chem.264: 3577–3582

    PubMed  Google Scholar 

  53. Zhang J., Myers M. and Forgac M. (1992) Characterization of the V0 domain of the coated vesicle (H+)-ATPase. J. Biol. Chem.267: 9773–9778

    PubMed  Google Scholar 

  54. Abrahams J. P., Leslie A. G. W., Lutter R. and Walker, J. E. (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature370: 621–628.

    Article  PubMed  Google Scholar 

  55. Arai H., Terres G., Pink S. and Forgac M. (1988) Topography and subunit stoichiometry of the coated vesicle proton pump. J. Biol. Chem.263: 8796–8802

    PubMed  Google Scholar 

  56. Moriyama Y. and Nelson N. (1989) Lysosomal H+-translocating ATPase has a similar subunit structure to chromaffin granules H+-ATPase complex. Biochim. Biophys. Acta980: 241–247

    PubMed  Google Scholar 

  57. Moriyama Y. and Nelson N. (1989) H+-translocating ATPase in Golgi apparatus: characterization as vacuolar H+-ATPase and its subunit structures. J. Biol. Chem.264: 18445–18450

    PubMed  Google Scholar 

  58. Peng S.-B., Stone D. K. and Xie X.-S. (1993) Reconstitution of recombinant 40-kDa subunit of the clathrin-coated vesicle H+-ATPase. J. Biol. Chem.268: 23519–23523

    PubMed  Google Scholar 

  59. Peng, S.-B., Zhang Y., Crider B. P., White A. E., Fried V. A., Stone D. K. and Xie X.-S. (1994) Reconstitution of the recombinant 70-kDa subunit of the clathrin-coated vesicle H+-ATPase. J. Biol. Chem.269: 27778–27782

    PubMed  Google Scholar 

  60. Peng S.-B., Zhang, Y., Tsai S. J., Xie X.-S. and Stone D. K. (1994) Reconstitution of recombinant 33-kDa subunit of the clathrin-coated vesicle H+-ATPase. J. Biol. Chem.269: 11356–11360

    PubMed  Google Scholar 

  61. Puopolo K. and Forgac M. (1990) Functional reassembly of the coated vesicle proton pump. J. Biol. Chem.265: 14836–14841

    PubMed  Google Scholar 

  62. Forgac M. (1992) Structure and properties of the coated vesicle (H+)-ATPase. J. Bioenerg. Biomembr.24: 341–350

    Article  PubMed  Google Scholar 

  63. Nelson H. and Nelson N. (1990) Disruption of genes encoding subunits of yeast vacuolar H+-ATPase causes conditional lethality. Proc. Natl. Acad. Sci. USA87: 3503–3507

    PubMed  Google Scholar 

  64. Noumi T., Beltrán C., Nelson H. and Nelson N. (1991) Mutational analysis of yeast vacuolar H+-ATPase. Proc. Natl. Acad. Sci. USA88: 1938–1942

    PubMed  Google Scholar 

  65. Kane P. M., Kuehn M. C., Howald-Stevenson I. and Stevens T. H. (1992) Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H+-ATPase. J. Biol. Chem.267: 447–454

    PubMed  Google Scholar 

  66. Supek F., Supekova L. and Nelson N. (1994) Features of vacuolar H+-ATPase revealed by yeast suppressor mutants. J. Biol. Chem.269: 26479–26485

    PubMed  Google Scholar 

  67. Bowman E. J., Tenney K. and Bowman B. J. (1988) Isolation of genes encoding theNeurospora vacuolar ATPase. J. Biol. Chem.263: 13994–14001

    PubMed  Google Scholar 

  68. Zimniak L., Dittrich P., Gogarten J. P., Kibak H. and Taiz L. (1988) The cDNA sequence of the 69 kDa subunit of the carrot vacuolar H+-ATPase. J. Biol. Chem.263: 9102–9112

    PubMed  Google Scholar 

  69. Moriyama Y. and Nelson N. (1987) Nucleotide binding sites and chemical modification of the chromaffin granule proton ATPase. J. Biol. Chem.262: 14723–14729

    PubMed  Google Scholar 

  70. Saraste M., Sibbald P. R. and Wittinghofer A. (1990) The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci.15: 430–434

    Article  PubMed  Google Scholar 

  71. Feng Y. and Forgac M. (1992) Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J. Biol. Chem.267: 5817–5822

    PubMed  Google Scholar 

  72. Manolson M. F., Rea P. A. and Poole R. J. (1985) Identification of 3-O-(4-benzoyl)benzoyladenosine 5′-triphosphate-andN,N′-dicyclohexylcarbodiimide-binding subunits of a higher plant H+-translocating tonoplast ATPase. J. Biol. Chem.260: 12273–12279

    PubMed  Google Scholar 

  73. Zhang J., Vasilyeva E., Feng Y. and Forgac M. (1995) Inhibition and labeling of the coated vesicle V-ATPase by 2-azido-[32P]ATP. J. Biol. Chem.270: 15494–15500

    Article  PubMed  Google Scholar 

  74. Bowman B. J., Allen R., Wechser M. A. and Bowman E. J. (1988) Isolation of genes encoding theNeurospora vacuolar ATPase. J. Biol. Chem.263: 14002–14007

    PubMed  Google Scholar 

  75. Senior A. E. (1990) The proton-translocating ATPase ofEscherichia coli. Annu. Rev. Biophys. Biophys. Chem.19: 7–41

    Article  PubMed  Google Scholar 

  76. Walker J. E., Lutter R., Dupuis A. and Runswick M. J. (1991) Identification of the subunits of F1F0-ATPase from bovine heart mitochondria. Biochemistry30: 5369–5378

    Article  PubMed  Google Scholar 

  77. Fillingame R. H. (1992) H+ transport and coupling by the F0 sector of the ATP synthase: insights into the molecular mechanism of function. J. Bioenerg. Biomembr.24: 485–491

    Article  PubMed  Google Scholar 

  78. Girvin M. E. and Fillingame R. H. (1993) Helical structure and folding of subunitc of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis. Biochemistry32: 12167–12177

    Article  PubMed  Google Scholar 

  79. Girvin M. E. and Fillingame R. H. (1994) Hairpin folding of subunitc of F1F0 ATP synthase:1H distance measurements to nitroxide-derivatized aspartyl-61. Biochemistry33: 665–674

    Article  PubMed  Google Scholar 

  80. Mandel M., Moriyama Y., Hulmes J. D., Pan Y.-C. E., Nelson H. and Nelson N. (1988) Cloning of cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc. Natl. Acad. Sci. USA85: 5521–5524

    PubMed  Google Scholar 

  81. Arai H., Berne M. and Forgac M. (1987) Inhibition of the coated vesicle proton pump and labeling of a 17,000 dalton polypeptide by DCCD. J. Biol. Chem.262: 11006–11011

    PubMed  Google Scholar 

  82. Sze H., Ward J. M. and Lai S. (1992) Vacuolar H+-translocating ATPases from plants: structure, function, and isoforms. J. Bioenerg. Biomembr.24: 371–381

    Article  PubMed  Google Scholar 

  83. Supekova L., Sbia M, Supek F., Ma Y.-M. and Nelson N. (1996) A novel subunit of vacuolar H+-ATPase related to theb subunit of F-ATPases. J. Exp. Biol.119: 1147–1156

    Google Scholar 

  84. Dunn S. D. (1992) The polar domain of theb subunit ofEscherichia coli F1F0-ATPase forms an, elongated dimer that interacts with the F1 sector. J. Biol. Chem.267: 7630–7636

    PubMed  Google Scholar 

  85. Vik S. B. and Dao N. N. (1992) Prediction of transmembrane topology of F0 proteins fromE. coli F1F0 ATP synthase using variational and hydrophobic moment analysis. Biochim. Biophys. Acta1140: 199–207

    PubMed  Google Scholar 

  86. Wang S.-Y., Moriyama Y., Mandel M., Hulmes J. D., Pan Y.-C. E., Danho W. et al. (1989) Cloning of cDNA encoding a 32-kDa protein: an accessory polypeptide of the H+-ATPase from chromaffin granules. J. Biol. Chem.263: 17638–17642

    Google Scholar 

  87. Munn A. L. and Riezman H. (1994) Endocytosis is required for the growth of vacuolar H+-ATPase-defective yeast: identification of six newEND genes. J. Cell Biol.127: 373–386

    Article  PubMed  Google Scholar 

  88. Ohya Y., Umemoto N., Tanida I., Ohta A., Iida H. and Anraku Y. (1991) Calcium-sensitivecls mutants ofSaccharomyces cerevisiae showing a pet phenotype are ascribable to defects of vacuolar membrane H+-ATPase activity. J. Biol. Chem.266: 13971–13977

    PubMed  Google Scholar 

  89. Stevens T. H. (1992) The structure and function of the fungal V-ATPase. J. Exp. Biol.172: 47–55

    PubMed  Google Scholar 

  90. Jones P. C., Harrison M. A., Kim Y.-I., Finbow M. E. and Findlay J. B. C. (1994) Structure and function of the proton-conducting sector of the vacuolar H+-ATPase. Biochem. Soc. Trans.22: 247–255

    PubMed  Google Scholar 

  91. Liu Q., Kane P. M., Newman P. R. and Forgac M. (1996) Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). J. Biol. Chem.271: 2018–2022

    Article  PubMed  Google Scholar 

  92. Ho M. N., Hill K. J., Lindorfer M. A. and Stevens T. H. (1993) Isolation of vacuolar membrane H+-ATPase-deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H+-ATPase. J. Biol. Chem.268: 221–227

    PubMed  Google Scholar 

  93. Doherty R. D. and Kane P. M. (1993) Partial assembly of the yeast vacuolar H+-ATPase in mutants lacking one subunit of the enzyme. J. Biol. Chem.268: 16845–16851

    PubMed  Google Scholar 

  94. Tomashek J. J., Sonnenburg J. L., Artimovich J. M. and Klionsky D. J. (1996) Resolution of subunit interactions and cytoplasmic sub-complexes of the yeast vacuolar proton-translocating ATPase. J. Biol, Chem.271: 10397–10404

    Google Scholar 

  95. Puopolo K., Sczekan M., Magner R. and Forgac M. (1992) The 40-kDa subunit enhances but is not required for activity of the coated vesicle proton pump. J. Biol. Chem.267: 5171–5176

    PubMed  Google Scholar 

  96. Nelson H. and Nelson N. (1990) Disruption of genes encoding subunits of yeast vacuolar H+-ATPase causes conditional lethality. Proc. Natl. Acad. Sci. USA87: 3503–3507

    PubMed  Google Scholar 

  97. Hill K. J. and Stevens T. H. (1994) Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a Di-lysine motif and is required for the assembly of the vacuolar H+-ATPase complex. Mol. Biol. Cell5: 1039–1050

    PubMed  Google Scholar 

  98. Supek F., Supekova L., Mandiyan S., Pan Y.-C. E., Nelson H. and Nelson N. (1994) A novel accessory subunit for vacuolar H+-ATPase from chromaffin granules. J. Biol. Chem.269: 24102–24106

    PubMed  Google Scholar 

  99. Pan Y. X., Gu H. H., Xu J. and Dean G. E. (1993)Saccharomyces cerevisiae expression of exogenous vacuolar ATPase subunit B. Biochim. Biophys. Acta1151: 175–185

    PubMed  Google Scholar 

  100. Supek F., Supekova L., Beltrán C., Nelson H. and Nelson N. (1992) Structure, function, and mutational analysis of V-ATPases. Ann. NY Acad. Sci.671: 284–292

    PubMed  Google Scholar 

  101. Schatz G. and Dobberstein B. (1996) Common principles of protein translocation across membranes. Science271: 1519–1526

    PubMed  Google Scholar 

  102. Nelson N. and Schatz G. (1979) Energy dependent processing of cytoplasmically-made precursors to mitochondrial proteins. Proc. Natl. Acad. Sci. USA76: 4365–4370

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, N., Klionsky, D.J. Vacuolar H+-ATPase: From mammals to yeast and back. Experientia 52, 1101–1110 (1996). https://doi.org/10.1007/BF01952108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952108

Key words

Navigation