Skip to main content
Log in

Electrical noise from lipid bilayer membranes in the presence of hydrophobic ions

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In the presence of the hydrophobic ion dipicrylamine, lipid bilayer membranes exhibit a characteristic type of noise spectrum which is different from other forms of noise described so far. The spectral density of current noise measured at zero voltage increases in proportion to the square of frequency at low frequencies and becomes constant at high frequencies. The observed form of the noise spectrum can be interpreted on the basis of a transport model for hydrophobic ions in which it is assumed that the ions are adsorbed in potential-energy minima at either membrane surface and are able to cross the central energy barrier by thermal activation. Accordingly, current-noise results from random fluctuations in the number of ions jumping over the barrier from right to left and from left to right. On the basis of this model the rate constantk i for the translocation of the hydrophobic ion across the barrier, as well as the mean surface concentrationN t of adsorbed ions may be caluculated from the observed spectral intensity of current noise. The values ofk i obtained in this way closely agree with the results of previous relaxation experiments. A similar, although less quantitative, agreement is also found for the surface concentrationN t .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O.S., Fuchs, M. 1975. Potential energy barriers to ion transport within lipid bilayers.Biophys. J. 15:795

    PubMed  Google Scholar 

  • Benz, R., Läuger, P. 1977. Transport kinetics of dipicrylamine through lipid bilayer membranes: Effects of membrane structure.Biochim. Biophys. Acta 468:245

    PubMed  Google Scholar 

  • Benz, R., Läuger, P., Janko, K. 1976. Transport kinetics of hydrophobic ions in lipid bilayer membranes: Charge-pulse relaxation studies.Biochim. Biophys. Acta 455:701

    PubMed  Google Scholar 

  • Bezanilla, F., Armstrong, C.M. 1975. Kinetic properties and inactivation of the gating currents of sodium channels in squid axon.Phil. Trans. R. Soc. London B 270:449

    Google Scholar 

  • Bruner, L.J. 1975. The interaction of hydrophobic ions with lipid bilayer membranes.J. Membrane Biol. 22:125

    Article  Google Scholar 

  • Carlslaw, H.S., Jaeger, J.C. 1959. Conduction of Heat in Solids, 2nd ed. Clarendon Press, Oxford

    Google Scholar 

  • Conti, F., Wanke, E. 1975. Channel noise in nerve membranes and lipid bilayers.Q. Rev. Biophys. 8:451

    PubMed  Google Scholar 

  • Dorset, D.L., Fishman, H.M. 1975. Excess electrical noise during current flow through porous membranes separating ionic solutions.J. Membrane Biol. 21:291

    Google Scholar 

  • Fishman, H.M., Dorset, D.L. 1973. Comments on electrical fluctuations associated with active transport.Biophys. J. 13:1339

    PubMed  Google Scholar 

  • Fishman, H.M., Poussart, D.J.M., Moore, L.E. 1975. Noise measurements in squid axon membrane.J. Membrane Biol. 24:281

    Article  Google Scholar 

  • Janko, K., Benz, R. 1977. Properties of lipid bilayer membranes made from lipids containing phytanic acid.Biochim. Biophys. Acta (in press)

  • Kampen, N.G. van. 1976. Fluctuations and noise in physical theory.Physica 83B:1

    Google Scholar 

  • Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225

    Article  Google Scholar 

  • Kolb, H.-A., Bamberg, E. 1977. Influence of membrane thickness and ion concentration on the properties of the gramicidin channel. Autocorrelation, spectral power density, relaxation and single-channel studies.Biochim. Biophys. Acta 464:127

    PubMed  Google Scholar 

  • Kolb, H.-A., Boheim, G. 1977. Analysis of the multi-pore system of alamethicin in a lipid membrane. II. Autocorrelation analysis and power spectral density.J. Membrane Biol. (in press)

  • Kolb, H.-A., Läuger, P., Bamberg, E. 1975. Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels.J. Membrane Biol. 20:133

    Article  Google Scholar 

  • Läuger, P. 1975. Shot noise in ion channels.Biochim. Biophys. Acta 413:1

    PubMed  Google Scholar 

  • Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20

    PubMed  Google Scholar 

  • Le Blanc, O.H., Jr. 1969. Tetraphenylborate conductance through lipid bilayer membranes.Biochim. Biophys. Acta 193:350

    PubMed  Google Scholar 

  • Liberman, E.A., Topaly, V.P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125

    PubMed  Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium specific membrane channels of frog skin are pores: Current fluctuation reveal high turnover.Science 195:292

    PubMed  Google Scholar 

  • McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 9, p. 71. Academic Press, New York (in press)

    Google Scholar 

  • Moore, L.E., Neher, E. 1976 Fluctuation and relaxation analysis of monazomycin-induced conductance in black lipid membranes.J. Membrane Biol. 27:347

    Article  Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398

    PubMed  Google Scholar 

  • Neumcke, B., Nonner, W., Stämpfli, R. 1976. Asymmetrical displacement current and its relation with the activation of sodium current in the membrane of frog myelinated nerve.Pfluegers Arch. 363:193

    Article  Google Scholar 

  • Onsager, L. 1931. Reciprocal relations in irreversible processes.Phys. Rev. 38:2265

    Article  Google Scholar 

  • Poussart, D.J.M. 1971. Membrane current noise in lobster axon under voltage clamp.Biophys. J. 11:211

    PubMed  Google Scholar 

  • Rojas, E., Keynes, R.D. 1975. On the relation between displacement currents and activation of the sodium conductance in the squid axon.Phil. Trans. R. Soc. London B 270:459

    Google Scholar 

  • Segal, J.R. 1972. Electrical fluctuations accociated with active transport.Biophys. J. 12:1371

    PubMed  Google Scholar 

  • Segal, J.R. 1973.Reply to: Comments on electrical fluctuations associated with active transport.Biophys. J. 14:513

    Google Scholar 

  • Stevens, C.F., 1972. Inferences about membrane properties from electrical noise measurements.Biophys. J. 12:1028

    PubMed  Google Scholar 

  • Szabo, G. 1976. The influence of dipole potentials on the magnitude and kinetics of ion transport in lipid bilayer membranes.In: Extreme Environment; Mechanism of Microbial Adaptation. H.R. Heinrich editor. Academic Press, New York (in press)

    Google Scholar 

  • Van der Ziel, A. 1970. Noise. Sources, Characterisation, Measurement. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Verveen, A.A., DeFelice, L.J. 1974. Membrane Noise.Prog. Biophys. Molec. Biol. 28:189

    Article  Google Scholar 

  • Wulf, J., Benz, R., Pohl, W.G. 1977. Properties of bilayer membranes in the presence of dipicrylamine. A comparative study by optical absorption and electrical relaxation measurements.Biochim. Biophys. Acta 465:429

    PubMed  Google Scholar 

  • Zingsheim, H.P., Neher, E. 1974. The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of ion pore formation in thin lipid membranes.Biophys. Chem. 2:197

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, H.A., Läuger, P. Electrical noise from lipid bilayer membranes in the presence of hydrophobic ions. J. Membrain Biol. 37, 321–345 (1977). https://doi.org/10.1007/BF01940938

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01940938

Keywords

Navigation