Skip to main content
Log in

Functions of fatty acid binding proteins

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Cytosolic fatty acid binding proteins (FABP) belong to a gene family of which eight members have been conclusively identified. These 14–15 kDa proteins are abundantly expressed in a highly tissue-specific manner. Although the functions of the cytosolic FABP are not clearly established, they appear to enhance the transfer of long-chain fatty acids between artificial and native lipid membranes, and also to have a stimulatory effect on a number of enzymes of fatty acid metabolism in vitro. These findings, as well as the tissue expression, ligand binding properties, ontogeny and regulation of these proteins provide a considerable body of indirect evidence supporting a broad role for the FABP in the intracellular transport and metabolism of long-chain fatty acids. The available data also support the existence of structure- and tissue-specific specialization of function among different members of the FABP gene family. Moreover, FABP may also have a possible role in the modulation of cell growth and proliferation, possibly by virtue of their affinity for ligands such as prostaglandins, leukotrienes and fatty acids, which are known to influence cell growth activity. FABP structurally unrelated to the cytosolic gene family have also been identified in the plasma membranes of several tissues (FABPpm). These proteins have not been fully characterized to date, but strong evidence suggests that they function in the transport of long-chain fatty acids across the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Bansal, M. P., Cook, R. G., Danielson, K. G., and Medina, D., A 14-kilodalton selenium-binding protein in mouse liver is fatty acidbinding protein. J. biol. Chem.264 (1989) 13780–13784.

    Article  CAS  PubMed  Google Scholar 

  2. Barbour, R. L., and Chan, S. M. P., Regulation of palmitoyl-CoA inhibition of mitochondrial adenine nucleotide transport by cytosolic fatty acid binding protein. Biochem. biophys. Res. Commun.89 (1979) 1168–1177.

    Article  CAS  PubMed  Google Scholar 

  3. Bass, N. M., Function and regulation of hepatic and intestinal fatty acid binding proteins. Chem. Phys. Lipids38 (1985) 95–114.

    Article  CAS  PubMed  Google Scholar 

  4. Bass, N. M., Organization and zonation of hepatic lipid metabolism. Cell Biol. Rev.19 (1989) 61–86.

    Google Scholar 

  5. Bass, N. M., The cellular fatty acid-binding proteins. Aspects of structure, regulation, and function. Int. Rev. Cytol.3 (1988) 143–184.

    Article  Google Scholar 

  6. Bass, N. M., Barker, M. E., Manning, J. A., Jones, A. L., and Ockner, R. K., Acinar heterogeneity of fatty acid binding protein expression in the livers of male, female and clofibrate-treated rats. Hepatology9 (1989) 12–21.

    Article  CAS  PubMed  Google Scholar 

  7. Bass, N. M., Kaur, S., Manning, J., Medzihradszky, K., Gibson, B. W., Luer, K., and Burlingame, A. L., Elasmobranch liver contains a fatty acid binding protein (FABP) with primary structure related to mammalian heart FABP and myelin P2 protein. Hepatology10 (1989) 591 (abstr.)

    Google Scholar 

  8. Bass, N. M., and Manning, J. A., Tissue expression of three structurally different fatty acid binding proteins from rat heart muscle, liver and intestine. Biochem. biophys. Res. Commun.137 (1986) 929–935.

    Article  CAS  PubMed  Google Scholar 

  9. Bass, N. M., Manning, J. A., and Ockner, R. K., Hepatic zonal uptake of a fluorescent fatty acid derivative is determined by velocity and direction of flow. Gastroenterology90 (1986) 1710 (abstr.).

    Google Scholar 

  10. Bass, N. M., Manning, J. A., Ockner, R. K., Gordon, J. I., Seetharam, S., and Alpers, D. H., Regulation of the biosynthesis of two distinct fatty acid-binding proteins in rat liver and intestine. Influences of sex differences and of clofibrate. J. biol. Chem.260 (1985) 1432–1436.

    Article  CAS  PubMed  Google Scholar 

  11. Bass, N. M., Raghupathy, E., Rhoads, D. E., Manning, J. A., and Ockner, R. K., Partial purification of molecular weight 12000 fatty acid binding protein from rat brain and their effect on synaptosomal Na+-dependent amino acid uptake. Biochemistry23 (1984) 6539–6544.

    Article  CAS  PubMed  Google Scholar 

  12. Bassuk, J. A., Tsichlis, P. N., and Sorof, S., Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes. Proc. natl Acad. Sci. USA84 (1987) 7547–7551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Behlke, J., Mieth, M., Böhmer, F.-D., and Grosse, R., Hydrodynamic and circular dichroic analysis of mammary-derived growth inhibitor. Biochem. biophys. Res. Commun.161 (1989) 363–370.

    Article  CAS  PubMed  Google Scholar 

  14. Berk, P. B., Potter, B. J., Sorrentino, D., Stremmel, W., Stump, D., Kiang, C.-L., and Zhou, S.-L., Characteristics of organic anion binding proteins from rat liver sinusoidal plasma membranes, in: Hepatic Transport in Organic Substances, pp. 195–210. Eds E. Petzinger, R. K.-H. Kinne and H. Sies. Springer-Verlag, Berlin, Heidelberg 1989.

    Chapter  Google Scholar 

  15. Bernier, M., Laird, D. M., and Lane, M. D., Insulin-activated tyrosine phosphorylation of a 15-kilodalton protein in intact 3T3-L1 adipocytes. Proc. natl Acad. Sci. USA84 (1987) 1844–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bernlohr, D. A., Doering, T. L., Kelly, T. J., and Lane, M. D., Tissue-specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. Biochem. biophys. Res. Commun.132 (1985) 850–855.

    Article  CAS  PubMed  Google Scholar 

  17. Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A., and Kelly, T. J. Jr, Expression of specific mRNAs during adipose differentiation. Identification of an mRNA encoding a homologue of myelin P2 protein. Proc. natl Acad. Sci. USA81 (1984) 5468–5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Billich, S., Wissel, T., Kratzin, H., Hahn, U., Hagenhoff, B., Lezius, A. G., and Spener, F., Cloning of a full-length complementary DNA for fatty acid binding protein from bovine heart. Eur. J. Biochem.175 (1988) 549–556.

    Article  CAS  PubMed  Google Scholar 

  19. Böhmer, F.-D., Kraft, R., Otto, A., Wernstedt C., Hellman, U., Kurtz, A., Müller, T., Rohde, K., Ethold, G., Lehmann, W., Langen, A., Heldin, C.-H., and Grosse, R., Identification of a polypeptide growth inhibitor from bovine mammary gland. J. biol. Chem.262 (1987) 15137–15143.

    Article  PubMed  Google Scholar 

  20. Böhmer, F.-D., Mieth, M., Reichmann, G., Taube, C., Grosse, R., and Hollenberg, M. D., A polypeptide growth inhibitor isolated from lactating bovine mammary gland (MDGI) is a lipid-carrying protein. J. cell. Biochem.38 (1988) 199–204.

    Article  PubMed  Google Scholar 

  21. Böhmer, F.-D., Sun, Q., Pepperle, M., Müller, T., Eriksson, U., Wang, J. L., and Grosse, R., Antibodies against Mammary-Derived Growth Inhibitor (MDGI) react with a fibroblast growth inhibitor and with heart fatty acid binding protein. Biochem. biophys. Res. Commun.148 (1987) 1425–1431.

    Article  PubMed  Google Scholar 

  22. Borchers, T., Unterberg, C., Rudel, H., Robenek, H., and Spener, F., Subcellular distribution of cardiac fatty acid binding protein in bovine heart muscle and quantitation with an enzyme-linked immunosorbent assay. Biochim. biophys. Acta1002 (1989) 54–61.

    Article  CAS  PubMed  Google Scholar 

  23. Bordewick, U., Heese, M., Borchers, T., Robenek, H., and Spener, F., Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effects on mitochondrial phosphatidic acid biosynthesis. Biol. Chem. Hoppe-Seyler370 (1989) 229–238.

    Article  CAS  PubMed  Google Scholar 

  24. Boscá, L., Diaz-Guerra, M. J. M., and Mojena, M., Oleate-induced translocation of protein kinase C to hepatic microsomal membranes. Biochem. biophys. Res. Commun.160 (1989) 1243–1249.

    Article  PubMed  Google Scholar 

  25. Brecher, P., Saouaf, R., Sugarman, J. M., Eisenberg, D., and LaRosa, K., Fatty acid transfer between multilamellar liposomes and fatty acid binding proteins. J. biol. Chem.259 (1984) 13395–13401.

    Article  CAS  PubMed  Google Scholar 

  26. Bronfman, M., Amigo, L., and Morales, M. N., Activation of hypolipidaemic drugs to acyl-coenzyme A thioesters. Biochem. J.239 (1986) 781–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burnett, D. A., Lysenko, N., Manning, J. A., and Ockner, R. K., Utilization of long chain fatty acids by rat liver. Studies of the role of fatty acid binding protein. Gastroenterology77 (1979) 241–249.

    Article  CAS  PubMed  Google Scholar 

  28. Burrier, R. E., and Brecher, P., Binding of lysophosphatidylcholine to the rat liver fatty acid binding protein. Biochim. biophys. Acta879 (1986) 229–239.

    Article  CAS  PubMed  Google Scholar 

  29. Burrier, R. E., Manson, C. R., and Brecher, P., Binding of acyl-CoA to liver fatty acid binding protein: effect on acyl-CoA synthesis. Biochim. biophys. Acta919 (1987) 221–230.

    Article  CAS  PubMed  Google Scholar 

  30. Burton, P., and Bloch, K., Studies on the mode of action of sterol carrier protein in the dehydrogenation of 5-cholest-7-en-3β-ol. J. biol. Chem.260 (1985) 7289–7294.

    Article  CAS  PubMed  Google Scholar 

  31. Cerutti, P. A., Prooxidant states and tumor production. Science227 (1985) 375–381.

    Article  CAS  PubMed  Google Scholar 

  32. Chan, L., Wei, C.-F., Li, W. H., Yang, C.-Y., Ratner, P., Pownall, H., Gotto, A. M. Jr, and Smith, L. C., Human liver fatty acid binding protein cDNA and amino acid sequence. Functional and evolutionary implications. J. biol. Chem.260 (1985) 2629–2632.

    Article  CAS  PubMed  Google Scholar 

  33. Chytil, F., and Ong, D. E., Intracellular vitamin A-binding proteins. A. Rev. Nutr.7 (1987) 321–335.

    Article  CAS  Google Scholar 

  34. Cistola, D. P., Sacchettini, J. C., Banaszak, L. J., Walsh, M. T., and Gordon, J. I., Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed inE. coli. J. biol. Chem.264 (1989) 2700–2710.

    Article  CAS  PubMed  Google Scholar 

  35. Cistola, D. P., Walsh, M. T., Corey, R. P., Hamilton, J. A., and Brecher, P., Interactions of oleic acid with liver fatty acid binding protein. A carbon-13 NMR study. Biochemistry27 (1987) 711–717.

    Article  Google Scholar 

  36. Claffey, K. P., Herrera, V. L., Brecher P., and Ruiz-Opazo, N., Cloning and tissue distribution of rat heart fatty acid binding protein mRNA: identical forms in heart and skeletal muscle. Biochemistry26 (1987) 7900–7904.

    Article  CAS  PubMed  Google Scholar 

  37. Collins, D. M., and Hargis, P. S., Distribution of fatty acid binding proteins in tissues and plasma ofGallus domesticus. Comp. Biochem. Physiol. [B]92 (1989) 283–289.

    CAS  Google Scholar 

  38. Cook, J. S., Lucas, J. J., Sibley, E., Bolanowski, M. A., Christy, R. J., Kelly, T. J., and Lane, M. D., Expression of the differentiation-induced gene for fatty acid-binding protein is activated by glucocorticoid and cAMP. Proc. natl Acad. Sci. USA85 (1988) 2949–2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cooper, R., Noy, N., and Zakim, D., A physical-chemical model for cellular uptake of fatty acids. Prediction of intracellular pool sizes. Biochemistry26 (1987) 5890–5896.

    Article  CAS  PubMed  Google Scholar 

  40. Craven, P. A., and DeRubertis, F. R., Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation by unsaturated fatty acids. Gastroenterology95 (1988) 676–685.

    Article  CAS  PubMed  Google Scholar 

  41. Craven, P. A., Pfansteil, J., and DeRubertis, F. R., Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile salts. J. clin. Invest.79 (1987) 532–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crisman, T. S., Claffey, K. P., Saouaf, R., Hanspal, J., and Brecher, P., Measurement of rat heart fatty acid binding protein by ELISA. Tissue distribution, developmental changes and subcellular distribution. J. molec. cell. Cardiol.19 (1987) 423–431.

    Article  CAS  Google Scholar 

  43. Daniels, C., Noy, N., and Zakim, D., Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry24 (1985) 3286–3292.

    Article  CAS  PubMed  Google Scholar 

  44. Das, T., Gourisankar, S., and Mukherjea, M., Human fetal liver fatty acid binding proteins. Role on glucose-6-phosphate dehydrogenase activity. Biochim. biophys. Acta1002 (1989) 164–172.

    Article  CAS  PubMed  Google Scholar 

  45. Das, T., Gourisankar, S., and Mukherjea, M., Purification and characterization of fatty acid binding protein from human placenta. Lipids23 (1988) 528–533.

    Article  CAS  PubMed  Google Scholar 

  46. Demmer, L. A., Birkenmeier, E. H., Sweetser, D. A., Levin, M. S., Zollman, S., Sparkes, R. S., Mohandas, T., Lusis, A. J., and Gordon, J. I., The cellular retinol binding protein II gene. J. biol. Chem.25 (1987) 2458–2467.

    Article  Google Scholar 

  47. Distel, R. J., Ro, H.-S., Rosen, B. S., Groves, D. L., and Spiegelman, B. M., Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: direct participation of c-fos. Cell49 (1987) 835–844.

    Article  CAS  PubMed  Google Scholar 

  48. Dutta-Roy, A. K., Gopalswamy, N., and Trulzsch, D. V., Prostaglandin E1 binds to Z protein of rat liver. Eur. J. Biochem.162 (1987) 615–619.

    Article  CAS  PubMed  Google Scholar 

  49. Fleischner, G., Meijer, D. K. F., Levine, W. G., Gatmaitan, Z., Gluck, R., and Arias, I. M., Effect of hypolipidemic drugs, nafenopin and clofibrate, on the concentration of ligandin and Z protein in rat liver. Biochem. biophys. Res. Commun.67 (1975) 1401–1407.

    Article  CAS  PubMed  Google Scholar 

  50. Fournier, N. C., and Rahim, M., Control of energy production in the heart. A new function for fatty acid binding protein. Biochemistry24 (1985) 2387–2396.

    Article  CAS  PubMed  Google Scholar 

  51. Fournier, N. C., and Rahim, M. H., Self-aggregation, a new property of cardiac fatty acid binding protein. J. biol. Chem.258 (1983) 2929–2933.

    Article  CAS  PubMed  Google Scholar 

  52. Fournier, N. C., and Richard, M. A., Fatty acid binding protein, a potential regulator of energy production in the heart. J. biol. Chem.263 (1988) 14471–14479.

    Article  CAS  PubMed  Google Scholar 

  53. Fournier, N. C., Geoffrey, M., and Deshusses, J., Purification and characterization of a long-chain fatty acid binding protein supplying the mitochondrial β-oxidation system in the heart. Biochim. biophys. Acta533 (1978) 457–464.

    Article  CAS  PubMed  Google Scholar 

  54. Fournier, N. C., Zuker, M., Williams, R. E., and Smith, I. C. P., Self-association of the cardiac fatty acid binding protein. Influence on membrane bound, fatty acid dependent enzymes. Biochemistry22 (1983) 1863–1872.

    Article  CAS  PubMed  Google Scholar 

  55. Fujii, S., Kawaguchi, H., and Yasuda, H., Fatty acid binding protein in kidney of normotensive and genetically hypertensive rats. Hypertension10 (1987) 93–99.

    Article  CAS  PubMed  Google Scholar 

  56. Fujii, S., Kawaguchi, H., and Yasuda, H., Purification and characterization of fatty acid binding protein from rat kidney. Arch. Biochem. Biophys.254 (1987) 552–558.

    Article  CAS  PubMed  Google Scholar 

  57. Fukai, F., Kase, T., Shidotani, T., Nagai, T., and Katayama, T., A novel role of fatty acid-binding protein as a vehicle of retinoids. Biochem. biophys. Res. Commun.147 (1987) 899–903.

    Article  CAS  PubMed  Google Scholar 

  58. Fukai, F., Kase, T., Shidotani, T., Nagai, T., and Katayama, T., Multiple classes of binding sites for palmitic acid on the fatty acid-binding protein molecule. Biochem. Int.18 (1989) 1101–1105.

    CAS  PubMed  Google Scholar 

  59. Gangl, A., and Ockner, R. K., Intestinal metabolism of free fatty acids. Intracellular compartmentation and mechanisms of control. J. clin. Invest.55 (1975) 803–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glatz, J. F. C., Janssen, A. M., Baerwaldt, C. C. F., and Veerkamp, J. H., Purification and characterization of fatty acid-binding proteins from rat heart and liver. Biochim. biophys. Acta837 (1985) 57–66.

    Article  CAS  PubMed  Google Scholar 

  61. Glatz, J. F. C., Paulussen, R. J. A., and Veerkamp, J. H., Fatty acid binding proteins from the heart. Chem. Phys. Lipids38 (1985) 115–129.

    Article  CAS  PubMed  Google Scholar 

  62. Glatz, J. F. C., van Bilsen, M., Paulussen, R. J. A., Veerkamp J. H., van der Vusse, G. J., and Reneman, R. S., Release of fatty acid binding protein from isolated rat heart subjected to ischemia or to the calcium paradox. Biochim. biophys. Acta961 (1988) 148–152.

    Article  CAS  PubMed  Google Scholar 

  63. Glatz, J. F. C., and Veerkamp, J. H., Intracellular fatty acid binding protein. Int. J. Biochem.17 (1985) 13–22.

    Article  CAS  PubMed  Google Scholar 

  64. Gordon, J. I., Intestinal epithelial differentiation. New insights from chimeric and transgenic mice. J. Cell Biol.108 (1989) 1187–1194.

    Article  CAS  PubMed  Google Scholar 

  65. Gordon, J. I., Alpers, D. H., Ockner, R. K., and Strauss, A. W., The nucleotide sequence of rat liver fatty acid binding protein mRNA. J. biol. Chem.258 (1982) 3356–3363.

    Article  Google Scholar 

  66. Gordon, J. I., Elshourbagy, N., Lowe, J. B., Liao, W. S., Alpers, D. H., and Taylor, J. M., Tissue specific expression and developmental regulation of two genes coding for rat fatty acid binding proteins. J. biol. Chem.260 (1985) 1995–1998.

    Article  CAS  PubMed  Google Scholar 

  67. Gordon, J. I., and Lowe, J. B., Analyzing the structures and functions of two abundant gastrointestinal fatty acid binding proteins with recombinant DNA and computational techniques Chem. Phys. Lipids38 (1985) 137–158.

    Article  CAS  PubMed  Google Scholar 

  68. Grabowski, G. A., McCoy, K. E., Williams, G. C., Dempsey, M. E., and Hanson, R. F., Evidence for carrier protein in bile acid synthesis. The effect of squalene and sterol carrier protein and albumin on the activity of 12-α-hydroxylase. Biochim. biophys. Acta441 (1976) 380–390.

    Article  CAS  PubMed  Google Scholar 

  69. Grinstead, G. F., Trzakos, J. M., Billheimer, J. T., and Gaylor, J. L., Cytosolic modulators of activities of microsomal enzymes of cholesterol biosynthesis. Effects of acyl-CoA inhibition and cytosolic biosynthesis. Biochim. biophys. Acta751 (1983) 41–51.

    Article  CAS  PubMed  Google Scholar 

  70. Haq, R. U., Christodoulides, L., Ketterer, B., and Shrago, E., Characterization and purification of fatty acid binding protein in rat and human adipose tissue. Biochim. biophys. Acta713 (1982) 193–198.

    Article  CAS  PubMed  Google Scholar 

  71. Haq, R. U., Shrago, E., Christodoulides, L., and Ketterer B., Purification and characterization of fatty acid binding protein in mammalian lung. Exp. Lung Res.9 (1985) 43–55.

    Article  CAS  PubMed  Google Scholar 

  72. Haq, R. U., Tsao, F., and Shrago, E., Relation of lung fatty acid binding protein to the biosynthesis of pulmonary phosphatidic acid and phosphatidylcholine. J. Lipid Res.28 (1987) 216–220.

    Article  CAS  PubMed  Google Scholar 

  73. Hargis, P. S., Porter, T. E., Hargis, B. M., Silsby, J. L., Olson, C. D., El Halawani, M. E., and Dempsey, M. E., Sterol carrier protein. Association with prolactin and reproductive system in Large White turkeys. Poultry Sci.65 (Suppl. 1) (1986) 54.

    Google Scholar 

  74. Hauft, S. M., Sweetser, D. A., Rotwein, P. S., Lajara, R., Hoppe, P. C., Birkenmeier E. H., and Gordon, J. I., A transgenic mouse model that is useful for analysing cellular and geographical differentiation of the intestine during fetal development. J. biol. Chem.264 (1989) 8419–8429.

    Article  CAS  PubMed  Google Scholar 

  75. Hawkins, J. M., Jones, W. E., Bonner, F. W., and Gibson, G. G., The effect of peroxisome proliferators on microsomal, peroxisomal, and mitochondrial enzyme activities in the liver and kidney. Drug Metab. Rev.18 (1987) 441–515.

    Article  CAS  PubMed  Google Scholar 

  76. Henning, S. J., Postnatal development: coordination of feeding, digestion, and metabolism. Am. J. Physiol.241 (1981) G199–214.

    CAS  PubMed  Google Scholar 

  77. Heuckeroth, R. O., Birkenmeier E. H., Levin, M. S., and Gordon, J. I., Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J. biol. Chem.262 (1987) 9709–9717.

    Article  CAS  PubMed  Google Scholar 

  78. Hresko, R. C., Bernier, M., Hoffman, R. D., Flores-Riveros, J. R., Liao, K., Laird, D. M., and Lane, M. D., Identification of phosphorylated 422 (aP2) protein as pp15, the 15-kilodalton target of the insulin receptor tyrosine kinase in 3T3-L1 adipocytes. Proc. natl Acad. Sci. USA85 (1988) 8835–8839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hsu, Y. M., Barry, J. M., and Wang, J. L., Growth control in cultured 3T3 fibroblasts. Neutralization and identification of a growthinhibitory factor by a monoclonal antibody. Proc. natl. Acad. Sci. USA81 (1984) 2107–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsu, Y. M., and Wang, J. L., Growth control in cultured 3T3 fibroblasts. V. Purification of an Mr 13,000 polypeptide responsible for growth inhibitory activity. J. Cell Biol.102 (1986) 362–369.

    Article  CAS  PubMed  Google Scholar 

  81. Hunt, C. R., Ro, J. H.-S., Dobson, D., Min, H. Y., and Spiegelman, B. M., Adipocyte P2 gene, developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc. natl. Acad. Sci. USA83 (1986) 3786–3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jagschies, G., Reers, M., Unterberg, C., and Spener, F., Bovine fatty acid binding proteins. Isolation and characterization of two fatty acid binding proteins that are distinct from corresponding hepatic proteins. Eur. J. Biochem.152 (1985) 537–545.

    Article  CAS  PubMed  Google Scholar 

  83. Johnson, R. S., Sheng, M., Greenberg, M. E., Kolodner, R. D., Papaioannou, V. E., and Spiegelman, B. M., Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science245 (1989) 1234–1236.

    Article  CAS  PubMed  Google Scholar 

  84. Jones, T. A., Bergfors, T., Sedzik, J., and Unge, T., The three dimensional structure of P2 myelin protein. EMBO J.7 (1988) 1594–1604.

    Article  Google Scholar 

  85. Jones, P. D., Carne, A., Bass, N. M., and Grigor, M. R., Isolation and characterization of fatty acid binding proteins from mammary tissue of lactating rats. Biochem. J.251 (1988) 919–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kamisaka, K., Listowsky, L., Gatmaitan, Z., and Arias, I. M., Circular dichroism analysis of the secondary structure of Z-protein and its complexes with bilirubin and other organic anions. Biochim. biophys. Acta393 (1975) 24–30.

    Article  CAS  PubMed  Google Scholar 

  87. Kamasika, K., Maezawa, H., Inagaki, T., and Okano, K., A lowmolecular weight binding protein for organic anions (Z protein) from human hepatic cytosol. Hepatology1 (1981) 221–227.

    Article  Google Scholar 

  88. Kaufman, M., Simoneau, J.-A., Veerkamp, J. H., and Pette, D., Electrostimulation-induced increases in fatty acid binding protein and myoglobin in rat fast-twitch muscle and comparison with tissue levels in heart. FEBS Lett.245 (1989) 181–184.

    Article  Google Scholar 

  89. Kawashima, Y., Nakagawa, S., and Kozuka, H., Effects of some hypolipidemic drugs and phthalic acid esters on fatty acid binding protein. J. pharmac. Dyn.5 (1982) 771–779.

    Article  CAS  Google Scholar 

  90. Kawashima, Y., Tachibana, Y., Nakagawa, S., and Kozuka, H., Species difference of liver fatty acid binding protein in rat, mouse and guinea pig. Lipids19 (1984) 481–487.

    Article  CAS  PubMed  Google Scholar 

  91. Ketterer, B., Ross-Mansell, P., and Whitehead, J. K., The isolation of carcinogen-binding protein from livers of rats given 4-dimethyl-aminoazobenzene. Biochem. J.103 (1967) 316–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ketterer, B., Tipping, E., Hackney, J. F., and Beale, D., A lowmolecular weight protein from rat liver that resembles ligandin in its binding properties. Biochem. J.155 (1976) 511–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kimura, H., Odani, S., Suzuki, J.-I., Arakawa, M., and Ono, T., Kidney fatty acid binding protein. Identification as α-2u globulin. FEBS Lett.246 (1989) 101–104.

    Article  CAS  PubMed  Google Scholar 

  94. Knudsen, J., Højrup, P., Hansen, H. S., Hansen, H. F., and Roepstorff, P., Acyl-CoA-binding protein in the rat. Biochem. J.262 (1989) 513–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kraft, A. S., Anderson, W. B., Cooper H. C., and Sando, J. J., Decrease in cytosolic calcium/phospholipid dependent protein kinase activity following phorbol ester treatment of EL 4 thymoma cells. J. biol. Chem.257 (1982) 193–196.

    Article  Google Scholar 

  96. Lalwani, N. D., Alvares, K., Reddy, M. K., Reddy, M. N., Parikh, I., and Reddy, J. K., Peroxisome proliferator-binding protein. Identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate-binding proteins from rat liver. Proc. natl Acad. Sci. USA84 (1987) 5242–5246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lam, K. T., Borkan, S., Claffey, K. P., Schwartz, J. H., Chobanian, A. V., and Brecher, P., Properties and differential regulation of two fatty acid binding proteins in rat kidney. J. biol. Chem.263 (1988) 15762–15768.

    Article  CAS  PubMed  Google Scholar 

  98. Lees, M., and Brostoff, S. W., Proteins of myelin, in: Myelin, pp. 197–219. Ed. P. Morell. Plenum Press, New York 1984.

    Chapter  Google Scholar 

  99. Lehmann, R., Widmaier, R., and Langen, P., Response of different mammary epithelial cell lines to a mammary derived growth inhibitor (MDGI). Biomed. biochim. Acta48 (1989) 143–151.

    CAS  PubMed  Google Scholar 

  100. Levi, A. J., Gatmaitan, Z., and Arias, I. M., Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromphthalein, and other anions. J. clin. Invest.48 (1969) 2156–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Levin, M. S., Pitt, A. J. A., Schwartz, A. L., Edwards, P. A., and Gordon, J. I., Developmental changes in the expression of genes involved in cholesterol biosynthesis and lipid transport in human and rat fetal and neonatal livers. Biochim. biophys. Acta1003 (1989) 293–300.

    Article  CAS  PubMed  Google Scholar 

  102. Li, E., Demmer, L. A., Sweetser, D. A., Ong, D. E., and Gordon, J. I., Rat cellular retinol-binding protein II. Use of a cloned cDNA to define its primary structure, tissue-specific expression, and developmental regulation. Proc. natl Acad. Sci. USA83 (1986) 5779–5783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lowe, J. B., Boguski, M. S., Sweetser, D. A., Elshourbagy, N. A., Taylor, J. M., and Gordon, J. I., Human liver fatty acid binding protein. Isolation of full length cDNA and comparative sequence analyses of orthologous and paralogous proteins. J. biol. Chem.260 (1985) 3414–3417.

    Article  Google Scholar 

  104. Lowe, J. B., Sacchettini, J. C., Laposata, M., McQuillan, J. J., and Gordon, J. I., Expression of rat intestinal fatty acid-binding protein inEscherichia coli. J. biol. Chem.262 (1987) 5931–5937.

    Article  CAS  PubMed  Google Scholar 

  105. Lowe, J. B., Strauss, A. W., and Gordon, J. I., Expression of a mammalian fatty acid-binding protein inEscherichia coli. J. biol. Chem.259 (1984) 12696–12704.

    Article  CAS  PubMed  Google Scholar 

  106. Lunzer, M. A., Manning, J. M., and Ockner, R. K., Inhibition of rat liver acetyl coenzyme A carboxylase by long-chain acyl-CoA and fatty acid. J. biol. Chem.252 (1977) 5483–5487.

    Article  CAS  PubMed  Google Scholar 

  107. Malewiak, M.-I., Bass, N. M., Griglio, S., and Ockner, R. K., Influence of genetic obesity and of fat-feeding on hepatic fatty acid binding protein concentration and activity. Int. J. Obesity12 (1988) 543–546.

    CAS  Google Scholar 

  108. Malewiak, M.-I., Griglio, S., Kalopissis, A. D., and Le Liepvre, X., Oleate metabolism in isolated hepatocytes from lean and obese Zucker rats. Influence of high-fat diet and in vitro response to glucagon. Metabolism32 (1983) 661–668.

    Article  CAS  PubMed  Google Scholar 

  109. Matarese, V., and Bernlohr, D. A., Purification of murine adipocyte lipid-binding protein. J. biol. Chem.263 (1988) 14544–14551.

    Article  CAS  PubMed  Google Scholar 

  110. Matsushita, Y., Umeyama, H., and Moriguchi, I., Purification and properties of Z protein from rabbit and rat liver. Chem. pharm. Bull.25 (1977) 647–652.

    Article  CAS  Google Scholar 

  111. McCormack, M., and Brecher, P., Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes. Biochem. J.244 (1987) 717–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McPhail, L. C., Clayton, C. C., and Snyderman, R., A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science224 (1984) 622–625.

    Article  CAS  PubMed  Google Scholar 

  113. Medina, D., and Morrison, D. G., Current ideas on selenium as a chemopreventive agent. Path. Immunopath. Res.7 (1988) 187–199.

    Article  CAS  Google Scholar 

  114. Mikkelsen, J., Højrup, P., Nielsen, P. F., Roepstorff, P., and Knudsen, J., Amino acid sequence of acyl-CoA binding protein from cow liver. Biochem. J.245 (1987) 857–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mikkelsen, J., and Knudsen, J., Acyl-CoA binding protein from cow. Biochem. J.248 (1987) 709–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Miller, W. C., Hickson, R. C., and Bass, N. M., Fatty acid binding proteins in the three types of rat skeletal muscle. Proc. Soc. exp. Biol. Med.189 (1988) 183–188.

    Article  CAS  PubMed  Google Scholar 

  117. Milton, M. N., Elcombe, C. R., Kass, G. E. N., and Gibson, G. G., Lack of evidence for a hepatic peroxisome proliferator receptor and an explanation for the binding of hypolidemic drugs to liver homogenates. Biochem. Pharmac.37 (1988) 793–798.

    Article  CAS  Google Scholar 

  118. Mishkin, S., Stein, L., Gatmaitan, Z., and Arias, I. M., The binding of fatty acids to cytoplasmic proteins: Binding to Z-protein in liver and other tissues of the rat. Biochem. biophys. Res. Commun.47 (1972) 997–1003.

    Article  CAS  PubMed  Google Scholar 

  119. Mogensen, I. B., Schulenberg, H., Hansen, H. O., Spener, F., and Knudsen, J., A novel acyl-CoA binding protein from bovine liver. Biochem. J.241 (1987) 189–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Munir, K. M., Custer, R. P., and Sorof, S., Normal hepatocytes exhibiting histone H3 with antibody accessible sites that are cryptic in carcinogen-altered hepatocytes. Cancer Res.49 (1989) 424–432.

    CAS  PubMed  Google Scholar 

  121. Murakami, K., and Routtenberg, A., Direct activation of purified protein kinase C by unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca2+. FEBS Lett.192 (1985) 189–193.

    Article  CAS  PubMed  Google Scholar 

  122. Narayanan, V., Barbosa, E., Reed, R., and Tennekoon, G., Characterization of a cloned cDNA encoding rabbit myelin P2 protein. J. biol. Chem.263 (1988) 9332–9337.

    Article  Google Scholar 

  123. Neely, J. R., and Morgan, H. E., Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. A. Rev. Physiol.36 (1974) 413–459.

    Article  CAS  Google Scholar 

  124. Nishizuka, Y., Studies and perspectives of protein kinase C. Science305 (1986) 305–312.

    Article  Google Scholar 

  125. Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature308 (1984) 693–698.

    Article  CAS  PubMed  Google Scholar 

  126. Noy, N., Donnelly, T. M., Cooper, R. B., and Zakim, D., The physical-chemical basis for sex-related differences in uptake of fatty acids by the liver. Biochim. biophys. Acta1003 (1989) 125–130.

    Article  CAS  PubMed  Google Scholar 

  127. Noy, N., Donnelly, T. M., and Zakim, D., Physical-chemical model for the entry of water-insoluble compounds into cells. Studies of fatty acid uptake by the liver. Biochemistry25 (1986) 2013–2021.

    Article  CAS  PubMed  Google Scholar 

  128. Noy, N., and Zakim, D., Fatty acids bound to unilamellar vesicles as substrates for microsomal acyl-CoA ligase. Biochemistry24 (1985) 3521–3525.

    Article  CAS  PubMed  Google Scholar 

  129. Nunn, W. D., Colburn, R. W., and Black, P. N., Transport of longchain fatty acids inEscherichia coli. J. biol. Chem.261 (1986) 167–171.

    Article  CAS  PubMed  Google Scholar 

  130. Ockner, R. K., Lysenko, N., Manning, J. A., Monroe, S. E., and Burnett, D. A., Sex steroid modulation of fatty acid utilization and fatty acid binding protein concentration in rat liver. J. clin. Invest.65 (1980) 1013–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ockner, R. K., and Manning, J., Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in intracellular fatty acid transport. J. clion. Invest.54 (1974) 326–338.

    Article  CAS  Google Scholar 

  132. Ockner, R. K., Manning, J. A., and Kane, J. P., Fatty acid binding protein. Isolation from rat liver, characterization, and immunochemical quantification. J. biol. Chem.257 (1982) 7872–7878.

    Article  CAS  PubMed  Google Scholar 

  133. Ockner, R. K., Manning, J. A., Poppenhausen, R. B., and Ho, W. K. L., A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science177 (1972) 56–58.

    Article  CAS  PubMed  Google Scholar 

  134. Offner, G. D., Troxler, R. F., and Brecher, P., Characterization of a fatty acid binding protein from rat heart. J. biol. Chem.261 (1986) 5584–5589.

    Article  CAS  PubMed  Google Scholar 

  135. Paulussen, R. J. A., Geelen, M. J. H., Beynen, A. C., and Veerkamp, J. H., Immunochemical quantitation of fatty-acid-binding proteins. I. Tissue and intracellular distribution, postnatal development and influence of physiological conditions on rat heart and liver fatty acid binding protein. Biochim. biophys. Acta1001 (1989) 201–209.

    Article  CAS  PubMed  Google Scholar 

  136. Paulussen, R. J. A., van der Logt, C. P., and Veerkamp, J. H., Characterization and binding properties of fatty acid binding proteins from human, pig and rat heart. Archs. Biochem. Biophys.264 (1988) 533–545.

    Article  CAS  Google Scholar 

  137. Peeters, R. A., in T Groen, M. A. P. M., de Moel, M. P., van Moerkerk, H. T. B. and Veerkamp, J. H., The binding affinity of fatty acid-binding proteins from human, pig and rat liver for different fluorescent fatty acids and other ligands. Int. J. Biochem.21 (1989) 407–418.

    Article  CAS  PubMed  Google Scholar 

  138. Peeters, R. A., Veerkamp, J. H., and Demel, R. A., Are fatty acid-binding proteins involved in fatty acid transfer? Biochim. biophys. Acta1002 (1989) 8–13.

    Article  CAS  PubMed  Google Scholar 

  139. Rauscher, F. J., III, Sambucetti, L. C., Curran, T., Distel, R. J., and Spiegelman, B. M., Common DNA binding site forfos-protein complexes and transcription factor AP-1. Cell52 (1988) 471–480.

    Article  CAS  PubMed  Google Scholar 

  140. Raza, H., Pogubala, J. R., and Sorof, S., Specific high affinity binding of lipoxygenase metabolites of arachidonic acid by liver fatty acid binding protein. Biochem. biophys. Res. Commun.161 (1989) 448–455.

    Article  CAS  PubMed  Google Scholar 

  141. Reers, M., Elbracht, R., Rudel, H., and Spener, F., Rapid method for the characterization of unilamellar phospholipid vesicles. Application to studies on fatty acid donor and acceptor properties of membranes and fatty acid binding proteins. Chem. Phys. Lipids36 (1984) 15–28.

    Article  CAS  Google Scholar 

  142. Renaud, G., Foliot, A., and Infante, R., Increased uptake of fatty acids by the isolated rat liver after raising the fatty acid binding protein concentration with clofibrate. Biochem. biophys. Res. Commun.80 (1978) 327–334.

    Article  CAS  PubMed  Google Scholar 

  143. Reyes, H., Levi, A. J., Gatmaitan, Z., and Arias, I. M., Studies of Y and Z, two hepatic cytoplasmic organic anion-binding proteins. Effect of drugs, chemicals, hormones, and cholestasis. J. clin. Invest.50 (1971) 2242–2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rhoads, D. E., Ockner, R. K., Peterson, N. A., and Raghaputhy, E., Modulation of membrane transport by free fatty acids: inhibition of synaptosomal sodium-dependent amino acid uptake. Biochemistry22 (1983) 1965–1970.

    Article  CAS  PubMed  Google Scholar 

  145. Rozengurt, E., Early signals in the mitogenic response. Science234 (1986) 161–166.

    Article  CAS  PubMed  Google Scholar 

  146. Sacchettini, J. C., Gordon, J. I., and Banaszak, L. J., Refined apoprotein structure of rat intestinal fatty acid binding protein produced inEscherichia coli. Proc. natl Acad. Sci. USA86 (1989) 7736–7740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sacchettini, J. C., Gordon, J. I., and Banaszak, L. J., Crystal structure of rat intestinal fatty acid binding protein. Refinement and analysis of theEscherichia coli-derived protein with bound palmitate. J. molec. Biol.208 (1989) 327–339.

    Article  CAS  PubMed  Google Scholar 

  148. Sacchettini, J. C., Gordon, J. I., and Banaszak, L. J., The structure of crystallineEscherichia coli-derived rat intestinal fatty acid-binding protein at 2.5-Å resolution. J. biol. Chem.263 (1988) 5815–5819.

    Article  CAS  PubMed  Google Scholar 

  149. Said, B., and Schultz, H., Fatty acid binding protein from rat heart. The fatty acid binding proteins from rat heart and liver are different proteins. J. biol. Chem.259 (1984) 1155–1159.

    Article  CAS  PubMed  Google Scholar 

  150. Sarzani, R., Claffey, K. P., Chobanian, A. V., and Brecher, P., Hypertension induces tisue-specific gene suppression of a fatty acid binding protein in rat aorta. Proc. natl Acad. Sci. USA85 (1988) 7777–7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schulenberg-Schell, H., Schafer, P., Keuper, H. J. K., Stanislawski, B., Hoffman, E., Ruterjans, H., and Spener, F., Interactions of fatty acids with neutral fatty acid-binding protein from bovine liver. Eur. J. Biochem.170 (1988) 565–574.

    Article  CAS  PubMed  Google Scholar 

  152. Schulz, H., Oxidation of fatty acids, in: Biochemistry of Lipids and Membranes, pp. 116–141. Eds D. E. Vance, and J. E. Vance. The Benjamin/Cummings Publ. Co. Inc., Menlo Park, CA 1985.

    Google Scholar 

  153. Schwieterman, W., Sorrentino, D., Potter, B. J., Rand, J., Kiang, C.-L., Stump, D., and Berk, P., Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut. Proc. natl Acad. Sci. USA85 (1988) 359–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Seifert, R., Schachtele, C., Rosenthal, W., and Schultz, G., Activation of protein kinase C by cis- and trans-fatty acids and its potentation by diacylglycerol. Biochem. biophys. Res. Commun.154 (1988) 20–26.

    Article  CAS  PubMed  Google Scholar 

  155. Sewell, J. E., Davis, S. K., and Hargis, P. S., Isolation characterization, and expression of fatty acid binding protein in liver ofGallus domesticus. comp. Biochem. Physiol. [B]92 (1989) 509–516.

    CAS  Google Scholar 

  156. Sheridan, M., Wilkinson, T. C. I., and Wilton, D. C., Studies on fatty acid binding proteins. Biochem. J.242 (1987) 919–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shields, H. M., Bates, M. L., Bass, N. M., Best, C. J., Alpers, D. H., and Ockner, R. K., Light microscopic immuno-cytochemical localization of hepatic and intestinal types of fatty acid binding protein in rat small intestine. J. Lipid Res.27 (1986) 549–557.

    Article  CAS  PubMed  Google Scholar 

  158. Sorof, S., and Custer, R. P., Elevated expression and cell cycle deregulation of a mitosis-associated target polypeptide of a carcinogen in hyperplastic and malignant rat hepatocytes. Cancer Res.47 (1987) 210–220.

    CAS  PubMed  Google Scholar 

  159. Sorrentino, D., Stump, D., Potter, B. J., Robinson, R. B., White, R., Kiang, C.-L., and Berk, P. D., Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kDa plasma membrane fatty acid binding protein similar to that in liver, adipose, tissue, and gut. J. clin. Invest.82 (1988) 928–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sorrentino, D., Van Ness, K., and Berk, P. D., Hepatocellular22Na+ uptake: effect of oleate. Hepatology10 (1989) 592 (abstr.).

    Google Scholar 

  161. Spener, F., Borchers, T., and Mukherjea, M., On the role of fatty acid binding proteins in fatty acid transport and metabolism. FEBS Lett.244 (1989) 1–5.

    Article  CAS  PubMed  Google Scholar 

  162. Storch, J., Bass, N. M., and Kleinfeld, A. M., Studies of the fatty acid-binding site of rat liver fatty acid binding protein using fluorescent fatty acids. J. biol. Chem.264 (1989) 8708–8713.

    Article  CAS  PubMed  Google Scholar 

  163. Stremmel, W., Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J. clin. Invest.82 (1988) 2001–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Stremmel, W., Diede, H. E., Schrader, M., Zimmerbeutel, B., Hopeler, H., Passarella, S., and Doonan, S., Further characterization of the membrane fatty acid binding protein (MFABP) by a monoclonal antibody to this protein. Hepatology10 (1989) 591 (abstr.)

    Google Scholar 

  165. Stremmel, W., Strohmeyer, G., and Berk, P., Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc. natl Acad. Sci. USA83 (1986) 3584–3588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Stremmel, W., Strohmeyer, G., Borchard, F., Kochwa, S., and Berk, P., Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc. natl. Acad. Sci. USA82 (1985) 4–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sundelin, J., Anundi, H., Tragardh, L., Erikkson, U., Lind, P., Hans, R., Peterson, P. A., and Rask, L., The primary structure of rat liver cellular retinol-binding protein. J. biol. Chem.260 (1985) 6488–6493.

    Article  CAS  PubMed  Google Scholar 

  168. Sundelin, J., Das, S. R., Erikkson, U., Rask, L., and Peterson, P. A., The primary structure of rat liver cellular retinoic acid-binding protein. J. biol. Chem.260 (1985) 6494–6499.

    Article  CAS  PubMed  Google Scholar 

  169. Sundelin, J., Erikkson, U., Melhus, H., Nilsson, M., Lundvall, J., Bavik, C. O., Hansson, E., Laurent, B., and Peterson, P. A., Cellular retinoid binding proteins. Chem. Phys. Lipids38 (1985) 175–185.

    Article  CAS  PubMed  Google Scholar 

  170. Suzuki, T., Hitomi, M., and Ono, T., Immunohistochemical distribution of hepatic fatty acid binding protein in rat and human alimentary canal. J. Histochem. Cytochem.36 (1988) 349–357.

    Article  CAS  PubMed  Google Scholar 

  171. Sweetser, D. A., Birkenmeier, E. H., Hoppe, P. C., McKeel, D. W., and Gordon, J. I., Mechanisms underlying generation of gradients in gene expression within the intestine. An analysis using transgenic mice containing fatty acid binding protein-human growth hormone fusion genes. Genes Dev.2 (1988) 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  172. Sweetser, D. A., Birkenmeier, E. H., Klisak, I. J., Zollman, S., Sparkes, R. S., Mohandas, T., Lusis, A. J., and Gordon, J. I., The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J. biol. Chem.262 (1987) 16 060–16 071.

    Article  CAS  Google Scholar 

  173. Sweetser, D. A., Hauft, S. M., Hoppe, P. C., Birkenmeier, E. H., and Gordon, J. I., Transgenic mice containing intestinal fatty acid binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc. natl Acad. Sci. USA85 (1988) 9611–9615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sweetser, D. A., Heuckeroth, R. O., and Gordon, J. I., The metabolic significance of mammalian fatty acid binding proteins. Abundant proteins in search of a function. A. Rev. Nutr.7 (1987) 337–359.

    Article  CAS  Google Scholar 

  175. Takikawa, H., and Kaplowitz, N., Binding of bile acids, oleic acid, and organic anions by rat and human hepatic Z protein. Archs. Biochem. Biophys.251 (1986) 385–392.

    Article  CAS  Google Scholar 

  176. Tipping, E., and Ketterer, B., The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem. J.195 (1981) 441–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Unterberg, C., Heidl, G., von Bassewitz, D.-B., and Spener, F., Isolation and characterization of the fatty acid binding protein from human heart. J. Lipid Res.27 (1986) 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  178. Uyemura, K., Yoshimura, K., Suzuki, M., and Kitamura, K., Lipid-binding activities of the P2 protein in peripheral nerve myelin. Neurochem. Res.9 (1984) 1509–1514.

    Article  CAS  PubMed  Google Scholar 

  179. Van der Vusse, G. J., Prinzen, F. W., van Bilsen, M., Engels, W., and Reneman, R. S., Accumulation of lipids and lipid-intermediates in the heart during ischemia. Basic Res. Cardiol.82 (Suppl. I) (1987) 157–167.

    PubMed  Google Scholar 

  180. Verkest, V., McArthur, M., and Hamilton, S., Fatty acid activation of protein kinase C. Dependence on diacylglycerol. Biochem. biophys. Res. Commun.152 (1988) 825–829.

    Article  CAS  PubMed  Google Scholar 

  181. Vincent, S. H., Bass, N. M., Snider, J. M., and Muller-Eberhard, U., Are the rat liver cytosolic fatty acid-binding (L-FABP) and heme-binding (HBP) proteins identical? Biochem. Arch.3 (1987) 443–451.

    CAS  Google Scholar 

  182. Vincent, S. H., and Muller-Eberhard, U., A protein of the Z Class of liver cytosolic proteins in the rat that preferentially binds heme. J. biol. Chem.260 (1985) 14521–14528.

    Article  CAS  PubMed  Google Scholar 

  183. Vinores, S. A., Churey, J. J., Haller, J. M., Schnabel, S. J., Custer, R. P., and Scrof, S., Normal liver chromatin contains a firmly bound and larger protein related to the principal cytosolic target polypeptide of a hepatic carcinogen. Proc. natl. Acad. Sci. USA81 (1984) 2092–2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Walz, D. A., Wider, M. D., Snow, J. W., Dass, C., and Desiderio, D. M., The complete amino acid sequence of procine gastrotropin, an ileal protein which stimulates gastric acid and pepsinogen secretion. J. biol. Chem.263 (1988) 14189–14195.

    Article  CAS  PubMed  Google Scholar 

  185. Warner, M., and Niems, A. M., Studies on Z-fraction. I. Isolation and partial characterization of low molecular weight ligand-binding protein from rat hepatic cytosol. Can. J. Physiol. Pharmac.53 (1975) 493–500.

    Article  CAS  Google Scholar 

  186. Warshaw, J. B., Cellular energy metabolism during fetal development. IV. Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Dev. Biol.28 (1972) 537–544.

    Article  CAS  PubMed  Google Scholar 

  187. Watanabe, T., Lalwani, N. D., and Reddy, J. K., Specific changes in the protein composition of rat liver in response to the peroxisome proliferators ciprofibrate, Wy-14,643 and di-(2-ethylhexyl)phthalate. Biochem. J.227 (1985) 767–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Weisiger, R. A., Fitz, J. G., and Scharschmidt, B. F., Hepatic oleate uptake. Electrochemical driving forces in intact rat liver. J. clin. Invest.83 (1989) 411–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wilkinson, T. C. I., and Wilton, D. C., Studies on fatty acid-binding proteins. The binding properties of rat liver fatty acid binding protein. Biochem. J.247 (1987) 485–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wittels, B., and Bressler, R., Lipid metabolism in the newborn heart. J. clin. Invest.44 (1965) 1639–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yang, V. W., Christy, R. J., Cook, J. S., Kelly, T. J., and Lane, M. D., Mechanism of regulation of the p422 (aP2) gene by cAMP during preadipocyte differentiation. Proc. natl. Acad. Sci. USA86 (1989) 3629–3633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaikaus, R.M., Bass, N.M. & Ockner, R.K. Functions of fatty acid binding proteins. Experientia 46, 617–630 (1990). https://doi.org/10.1007/BF01939701

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01939701

Key words

Navigation