Skip to main content
Log in

Control of adenine nucleotide metabolism and glycolysis in vertebrate skeletal muscle during exercise

  • Multi-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The turnover of adenosine triphosphate (ATP) in vertebrate skeletal muscle can increase more than a hundredfold during high-intensity exercise while the content of ATP in muscle may remain virtually unchanged. This requires that the rates of ATP hydrolysis and ATP synthesis are exactly balanced despite large fluctuations in reaction rates. ATP is regenerated initially at the expense of phosphocreatine (PCr) and then mainly through glycolysis from muscle glycogen. The increased ATP turnover in contracting muscle will cause an increase in the contents of adenosine diphosphate (ADP), adenosine monophosphate (AMP) and inorganic phosphate (Pi), metabolites that are substrates and activators of regulatory enzymes such as glycogen phosphorylase and phosphofructokinase. An intracellular metabolic feedback mechanism is thus activated by muscle contraction. How muscle metabolism is integrated in the intact body under physiological conditions is not fully understood. Common frogs are suitable experimental animals for the study of this problem because they can readily be induced to change from rest to high-intensity exercise, in the form of swimming. The changes in metabolites and effectors in gastrocnemius muscle were followed during exercise, post-exercise recovery and repeated exercise. The results suggest that glycolytic flux in muscle is modulated by signals from outside the muscle and that fructose 2,6-bisphosphate is a key signal in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberty, R. A., Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J. biol. Chem.243 (1968) 1337–1343.

    PubMed  Google Scholar 

  2. Bassols, A. M., Carreras, J., and Cusso, R., Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction. Birochem. J.240 (1986) 747–751.

    Google Scholar 

  3. Beitner, R., Regulation of carbohydrate metabolism by glucose 1,6-bisphosphate in extrahepatic tissues; comparison with fructose 2,6-bisphosphate. Int. J. Biochem.22 (1990) 553–557.

    Article  PubMed  Google Scholar 

  4. Blau, C., and Wegener, G., Metabolic integration in locust flight: the effect of octopamine on fructose 2,6-bisphosphate content of flight muscle in vivo. J. comp. Physiol. B164 (1994) 11–15.

    Article  Google Scholar 

  5. Bosca, L., Challiss, R. A. J., Newsholme, E. A., The effect of fructose 2,6-bisphosphate on muscle fructose-1,6-bisphosphatase activity. Biochim. biophys. Acta828 (1985) 151–154.

    PubMed  Google Scholar 

  6. Boutilier, R. G., Emilio, M. G., and Shelton, E., Aerobic and anaerobic correlates of mechanical work by gastrocnemius muscles of the aquatic amphibianXenopus laevis. J. expl. Biol.122 (1986) 223–235.

    Google Scholar 

  7. Burkhardt, G., and Wegener, G., Glycogen phosphorylase from flight muscle of the hawk moth,Manduca sexta: purification and properties of three interconvertible forms and the effect of flight on their interconversion. J. comp. Physiol. B164 (1994) 261–271.

    Article  Google Scholar 

  8. Cadefau, J. A., Parra, J., Cusso, R., Heine, G., and Pette, D., Responses of fatiguable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation. Pflügers Arch.424 (1993) 529–537.

    Article  Google Scholar 

  9. Challiss, R. A. J., Blackledge, M. J., Shoubridge, E. A., and Radda, G. K., A gated31P-n.m.r. study of bioenergetic recovery in rat skeletal muscle after tetanic contraction. Biochem. J.259 (1989) 589–592.

    PubMed  Google Scholar 

  10. Gadian, D. G., Nuclear magnetic resonance and its applications to living systems. Oxford University Press, Oxford 1982.

    Google Scholar 

  11. Gadian, D. G., Radda, G. K., Brown, T. R., Chance, E. M., Dawson, M. J., and Wilkie, D. R., The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance. Biochem. J.194 (1981) 215–228.

    PubMed  Google Scholar 

  12. Godt, R. E., and Maughan, D. W., On the composition of the cytosol of relaxed skeletal muscle of the frog. Am. J. Physiol.254 (1988) C591-C604.

    PubMed  Google Scholar 

  13. Helmreich, E., and Cori, C. F., Regulation of glycolysis in muscle. Adv. Enzyme Reg.3 (1965) 91–107.

    Article  Google Scholar 

  14. Kammermeier, H., High energy phosphate of the myocardium: concentration versus free energy change. Basic Res. Cardiol.82 (1987) 31–36.

    PubMed  Google Scholar 

  15. Kemp, R. G., and Foe, L. G., Allosteric regulatory properties of muscle phosphofructokinase. Molec. Cell Biochem.57 (1983) 147–154.

    PubMed  Google Scholar 

  16. Krause, U., and Wegener, G., 6-phosphofructokinase from frog skeletal muscle: purification and properties. Biochem. Soc. Trans.18 (1990) 592–593.

    PubMed  Google Scholar 

  17. Krause, U., and Wegener, G., Metabolic changes in skeletal muscle of frog during exercise and recovery. Biochem. Soc. Trans.19 (1991) 137S.

    Google Scholar 

  18. Krause, U., and Wegener, G., Regulation of fructose 2,6-bisphosphate content in skeletal muscle of the common frog: effects of muscle work and drugs. Verh. Dtsch. Zool. Ges.88.1 (1995) 113.

    Google Scholar 

  19. Krause, U., and Wegener, G., Exercise and recovery in frog muscle: metabolism of PCr, adenine nucleotides, and related compounds. Am. J. Physiol.270 (Regulatory Integrative Comp. Physiol.39) (1996) R811-R820.

    PubMed  Google Scholar 

  20. Krause, U., and Wegener, G., Control of glycolysis in vertebrate skeletal muscle during exercise. Am. J. Physiol.270 (Regulatory Integrative Comp. Physiol.39) (1996) R821-R829.

    Google Scholar 

  21. Krebs, E. G., Phosphorylation and dephosphorylation of glycogen phosphorylase: a prototype of reversible covalent modification. Curr. Top. Cell. Reg.18 (1981) 401–419.

    Google Scholar 

  22. Kushmerick, M. J., Energetics of muscle contraction, in: Handbook of Physiology, pp. 189–236. Eds L. D. Peachey, R. H. Adrian, and S. R. Geiger. Bethesda, Maryland: Am. Physiol. Soc., Section 10: Skeletal muscle 1983.

    Google Scholar 

  23. Mainwood, G. W., and Worsley-Brown, P., The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. J. Physiol.250 (1975) 1–22.

    Google Scholar 

  24. Meyer, R. A., Brown, T. R., and Kushmerick, M. J., Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am. J. Physiol.248 (Cell Physiol.17) (1985) C279-C287.

    PubMed  Google Scholar 

  25. Minatogawa, Y., and Hue, L., Fructose 2,6-bisphosphate in rat skeletal muscle during contraction. Biochem. J.223 (1984) 73–79.

    PubMed  Google Scholar 

  26. Needham, D. M., Machina carnis — the Biochemistry of Muscular Contraction and its Historical Development. Cambridge University Press 1971.

  27. Newsholme, E. A., and Blomstrand, E., The plasma level of some amino acids and physical and mental fatigue. Experientia52 (1996) 413–415.

    PubMed  Google Scholar 

  28. Newsholme, E. A., Beis, I., Leech, A. R., and Zammit, V. A., The role of creatine kinase and arginine kinase in muscle. Biochem. J.172 (1978) 533–537.

    PubMed  Google Scholar 

  29. Newsholme, E. A., and Leech, A. R., Biochemistry for the Medical Sciences. John Wiley and Sons, Chichester, New York 1983.

    Google Scholar 

  30. Poorman, R. A., Randolph, A., Kemp, R. G., and Heinrikson, R. L., Evolution of phosphofructokinase-gene duplication and creation of new effector sites. Nature, Lond.309 (1984) 467–469.

    Google Scholar 

  31. Pyko, M., Rider, M. H., Hue, L., and Wegener, G., 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog skeletal muscle: purification, kinetics and immunological properties. J. comp. Physiol. B163 (1993) 89–98.

    Article  PubMed  Google Scholar 

  32. Radda, G. K., Control, bioenergetics, and adaptation in health and disease: noninvasive biochemistry from nuclear magnetic resonance. FASEB J.6 (1992) 3032–3038.

    PubMed  Google Scholar 

  33. Rosing, J., and Slater, E. C., The value of †G° for the hydrolysis of ATP. Biochim. biophys. Acta267 (1972) 275–290.

    PubMed  Google Scholar 

  34. Sahlin, K., and Katz, A., Adenine nucleotide metabolism, in: Principles of Exercise Biochemistry (2nd ed), pp. 137–157. Ed. J. R. Poortmans. Karger, Basel 1993.

    Google Scholar 

  35. Schmidt, H., and Wegener, G., Glycogen phosphorylase in fish muscle: demonstration of three interconvertible forms. Am. J. Physiol.258 (Cell Physiol.27) (1990) C344-C351.

    PubMed  Google Scholar 

  36. Sols, A., Castano, J. G., Aragón, J. J., Domenech, C., Lazo, P. A., and Nieto, A., Multimodulation in phosphofructokinases in metabolic regulation, in: Metabolic Interconversion of Enzymes, pp. 111–123. Ed. H. Holzer. Springer, Berlin, Heidelberg, New York 1981.

    Google Scholar 

  37. Sprang, S. R., Acharya, K. R., Goldsmith, E. J., Stuart, D. I., Varvill, K., Fletterick, R. J., Madsen, N. B., and Johnson, L. N., Structural changes in glycogen phosphorylase induced by phosphorylation. Nature, Lond.336 (1988) 215–221.

    Google Scholar 

  38. Stanley, W. C., and Connett, R. J., Regulation of muscle carbohydrate metabolism during exercise. FASEB J.5 (1991) 2155–2159.

    PubMed  Google Scholar 

  39. Taylor, D. J., Styles, P., Matthews, P. M., Arnold, D. A., Gadian, D. G., Bore, P. J., and Radda, G. K., Energetics of human muscle: exercise-induced ATP depletion. Magn. Res. Med.3 (1986) 44–54.

    Google Scholar 

  40. Teague, W. E., and Dobson, G. P., Effect of temperature on the creatine kinase equilibrium. J. biol. Chem.267 (1992) 14084–14093.

    PubMed  Google Scholar 

  41. Tornheim, K., Activation of muscle phosphofructokinase by fructose 2,6-bisphosphate and fructose 1,6-bisphosphate is differently affected by other regulatory metaboites. J. biol. Chem.260 (1985) 7985–7989.

    PubMed  Google Scholar 

  42. Ulmer, H.-V., Concept of an extracellular regulation of muscular metabolic rate during heavy exercise of humans by psychological feedback. Experientia52 (1996) 416–420.

    PubMed  Google Scholar 

  43. Vaandrager, S. H., Van Marrewijk, W. J. A., and Beenakkers, A. M. T., Glycogen phosphorylase activity in flight muscles ofLocusta migratoria at rest and during flight. Insect Biochem.16 (1986) 749–756.

    Article  Google Scholar 

  44. Van Schaftingen, E., D-fructose 2,6-bisphosphate, in: Adv. Enzymol. relat. Areas Mol. Biol, pp. 315–395. Ed. A. Meister. John Wiley and Sons, New York 1987.

    Google Scholar 

  45. Van Schaftingen, E., Hue, L., and Hers, H.-G., Fructose 2,6-bisphosphate, the probable structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem. J.192 (1980) 897–901.

    PubMed  Google Scholar 

  46. Veech, R. L., Lawson, J. W. R., Cornell, N. W., and Krebs, H. A., Cytosolic phosphorylation potential. J. biol. Chem.245 (1979) 6538–6547.

    Google Scholar 

  47. Wegener, G., flying insects: model systems in exercise physiology. Experientia52 (1996) 404–412.

    PubMed  Google Scholar 

  48. Wegener, G., Krause, U., and Thuy, M., Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog. FEBS Lett.267 (1990) 257–260.

    Article  PubMed  Google Scholar 

  49. Wegener, G., Bolas, N. M., and Thomas, A. A. G., Locust flight metabolism studied in vivo by31P NMR spectroscopy. J. comp. Physiol. B161 (1991) 247–256.

    Article  Google Scholar 

  50. Wegener, G., and Krause, U., Environmental and exercise anaerobiosis in frogs, in: Surviving Hypoxia: Mechanisms of Control and Adaptation, pp. 217–236. Eds P. W. Hochachka, P. L. Lutz, T. Sick, M. Rosenthal, and G. van den Thillart. CRC Press, Boca Raton 1993.

    Google Scholar 

  51. Wilkie, D. R., The control of glycolysis in living muscle studied by nuclear magnetic resonance and other techniques. Biochem. Soc. Trans.11 (1983) 244–246.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, U., Wegener, G. Control of adenine nucleotide metabolism and glycolysis in vertebrate skeletal muscle during exercise. Experientia 52, 396–403 (1996). https://doi.org/10.1007/BF01919306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01919306

Key words

Navigation