Skip to main content
Log in

A comparison of pyridoxal 5′-phosphate dependent decarboxylase and transaminase enzymes at a molecular level

  • Multi-Author Review
  • Molecular Recognition
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Pyridoxal 5′-phosphate is a coenzyme for a number of enzymes which catalyse reactions at Cα of amino acid substrates including transaminases, decarboxylases and serine hydroxymethyltransferase. Using the X-ray coordinates for a transaminase, aspartate aminotransferase, and the results of stereochemical and mechanistic studies for decarboxylases and serine hydroxymethyltransferase, an active-site structure for the decarboxylase group is constructed. The structure of the active-site is further refined through active-site pyridoxyllysine peptide sequence comparison and a 3-D catalytic mechanism for the L-α-amino acid decarboxylases is proposed. The chemistry of serine hydroxymethyltransferase is re-examined in the light of the proposed decarboxylase mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abell, L. M., and O'Leary, M. H., Nitrogen isotope effects on glutamate decarboxylase fromEscherichia coli. Biochemistry27 (1988) 3325–3330.

    Article  CAS  PubMed  Google Scholar 

  2. Aberhart, D. J., and Russell, D. J., Steric course of ketopantoate hydroxymethyltransferase inE. coli. J. Amer. chem. Soc.106 (1984) a) 4902–4907.

    Article  CAS  Google Scholar 

  3. Akhtar, M., Stevenson, D. E., and Gani, D., Fern L-methionine decarboxylase: mechanism of abortive transamination. Biochemistry29 (1990) 7648–7660.

    Article  CAS  PubMed  Google Scholar 

  4. Ando-Yamamoto, M., Hayashi, H., Sugiyama, T., Fukui, H., Watanabe, T., and Wada, T., Purification of L-dopa decarboxylase from rat liver-production of polyclonal and monoclonal antibodies against it. J. Biochem.101 (1987) 405–414.

    Article  CAS  PubMed  Google Scholar 

  5. Applebaum, D., Sabo, D. L., Fischer, E. H., and Morris, D. R., Biodegrative ornithine decarboxylase ofEscherichia coli purification, properties and pyridoxal 5′-phosphate binding site. Biochemistry14 (1975) 3675–81.

    Article  CAS  PubMed  Google Scholar 

  6. Arnone, A., Rogers, P. H., Schmidt, J., Han, C.-N., Harris, C. M., and Metzler, D. E., Preliminary crystallographic study of aspartate 2-oxoglutarate aminotransferase from pig heart. J. molec. Biol.112 (1977) 509–13; also see reference 72.

    Article  CAS  PubMed  Google Scholar 

  7. Asada, Y., Tanizawa, K., Sawada, S., Suzuki, T., Misono, H., and Soda, K., Stereochemistry of meso-α, ω-diaminopimelate decarboxylase reaction: the first evidence for pyridoxal 5′-phosphate dependent decarboxylation with inversion of configuration. Biochemistry20 (1981) 6681–6886.

    Article  Google Scholar 

  8. Austermühle-Bertola, E., Ph. D., Dissertation No. 5009, ETH, Zurich 1973.

  9. Badet, B., and Walsh, C., Purification of an alanine racemase from streptococcus faecalis and analysis of its inactivation by (1-aminoethyl) phosphonic acid enantiomers. Biochemistry24 (1985) 1333–1341.

    Article  CAS  PubMed  Google Scholar 

  10. Bailey, G. B., Chotamangsa, O., and Vuttivej, K., Control of pyridoxal phosphate enzyme reaction specificity studied with α-dialkylamino acid transaminase. Biochemistry9 (1970) 3243–8.

    Article  CAS  PubMed  Google Scholar 

  11. Barra, D., Martini, F., Montarani, G., Doonan, S., and Bossa, F., Primary structure of mitochondrial aspartate aminotransferase from turkey liver. Cysteine-containing peptides. FEBS Lett.108 (1979) 103–6.

    Article  CAS  PubMed  Google Scholar 

  12. Barra, D., Bossa, F., Doonan, S., Fahmy, H. M. A., Hughes, G. J., Martini, F., Petruzelli, R., and Wittmann-Liebold, B., The cytosolic and mitochondrial aspartate aminotransferases from pig heart. A comparison of their primary structures, predicted secondary structures and some physical properties. Eur. J. Biochem.108 (1980) 405–14.

    Article  CAS  PubMed  Google Scholar 

  13. Barra, D., Martini, F., Angelaccio, S., Bossa, F., Gavrilanes, F., Peterson, D., Bullis, B., and Schirch, L., Sequence homology between prokaryotic and eukaryotic forms of serine hydroxymethyltransferase. Biochem. biophys. Res. Commun.116 (1983) 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  14. Blakley, R. L., The biochemistry of folic acid and related pteridines, frontiers of biology, vol. 13, p. 190. Eds A. Neuberger and E. D. Tatum. North-Holland, Amsterdam 1969.

    Google Scholar 

  15. Boeker, E. A., Fischer, E. H., and Snell, E. E., Arginine decarboxylase fromEscherichia coli. IV, structure of the pyridoxal binding site. J. biol. Chem.246 (1971) 6776–81.

    Article  CAS  PubMed  Google Scholar 

  16. Bossa, F., Martini, F., Barra, D., Voltattorni, C. B., Minelli, A., and Turano, C., The chymotryptic phosphopyridoxyl peptide of DOPA decarboxylase from pig kidney. Biochem. biophys. Res. Commun.78 (1977) 177–84.

    Article  CAS  PubMed  Google Scholar 

  17. Bouclier, M., Jung, M. J., and Lippert, B., Stereochemistry of reactions catalysed by mammalian brain L-glutamate 1-carboxylase and 4-aminobutyrate 2-oxogluta rate aminotransferase. Eur. J. Biochem.98 (1979) 363–368.

    Article  CAS  PubMed  Google Scholar 

  18. Burnett, G., Walsh, C. T., Yonaka, S., Toyama, S., and Soda, K., Stereospecificity of enzymatic transamination of γ-aminobutyrate. J. chem. Soc. chem. Comm. (1979) 826–828.

  19. Cleland, W. W., The use of isotope effects, the detailed analysis of catalysed mechanisms of enzymes. Bioorganic Chem.15 (1987) 283–302.

    Article  CAS  Google Scholar 

  20. Cronin, C. N., and Kirsch, J. F., Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis. Biochemistry27 (1988) 4572–4579.

    Article  CAS  PubMed  Google Scholar 

  21. Dominici, P., Tancini, B., and Voltattorni, C. B., Chemical modification of pig kidney 3,4-dihydroxyphenylalanine decarboxylase with diethyl pyrocarbonate. Evidence for an essential histidyl residue. J. biol. Chem.260 (1985) 10583–10589.

    Article  CAS  PubMed  Google Scholar 

  22. Doonan, S., Doonan, H. J., Hanford, R., Vernon, C. A., Walker, J. M., and Airoldi, L. P., Primary structure of aspartate aminotransferase in pig heart muscle. Digestion with a proteinase, having specificity for lysine residues. Biochem. J.149 (1975) 497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunathan, H. C., Conformation and reaction specificity in pyridoxal dependent enzymes. Proc. natl Acad. Sci. USA55 (1966) 712–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Enzyme Nomenclature, recommendations of the International Union of Biochemistry. Academic Press Inc., Orlando, Florida 1984.

  25. Eveleth, D. D., Gietz, R. D., Spencer, C. A., Nargang, F. E., Hodgetts, R. B., and Marsh, J. L., Sequence and structure of the DOPA decarboxylase gene of drosophila: Evidence for novel RNA splicing variants, EMBO J.5 (1986) 2663–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fecker, L. F., Beier, H., and Berlin, J., Cloning and characterisation of a lysine decarboxylase gene fromHafnia alvei. Molec. Gen. Genet.203 (1986) 177–184.

    Article  CAS  Google Scholar 

  27. Floss, H. G., and Vederas, J. C., Stereochemistry of pyridoxal-P catalysed reactions, in: Stereochemistry, pp. 161–199. Ed. C. Tamm. Elsevier, Amsterdam 1982.

    Chapter  Google Scholar 

  28. Fonda, M. L., Glutamate decarboxylase substrate specificity and inhibition by carboxylic acids. Biochemistry11 (1972) 1304–1309.

    Article  CAS  PubMed  Google Scholar 

  29. Fonzi, W. A., and Sypherd, P. S., The gene and the primary structure of ornithine decarboxylase from saccharomyces cerevisiae. J. biol. Chem.262 (1987) 10127–10133.

    Article  CAS  PubMed  Google Scholar 

  30. Fujiwara, K., Okamura-Ikeda, K., and Motokawa, Y., Amino acid sequence of the phosphopyridoxyl peptide from P-protein of the chicken liver glycine cleavage system. Biochem. biophys. Res. Commun.149 (1987) 621–627.

    Article  CAS  PubMed  Google Scholar 

  31. Gani, D., Enzyme chemistry. Ann. Rep. Prog. Chem. (B)82 (1985) 287–310.

    Article  CAS  Google Scholar 

  32. Gani, D., Pyridoxal-dependent systems in comprehensive medicinal chemistry, vol. 2, pp. 213–254. Ed. P. G. Sammes. Pergamon, Oxford 1990.

    Google Scholar 

  33. Graf-Hausner, U., Wilson, K. J., and Christen, P., The covalent structure of mitochondrial aspartate aminotransferase from chicken-Identification of segments of the polypeptide chain invariant specifically in the mitochondrial isoenzyme. J. biol. Chem.258 (1983) 8813–26.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta, M., and Coffino, P., Mouse ornithine decarboxylase: Complete amino acid sequence deduced from cDNA. J. biol. Chem.260 (1985) 2941–2944.

    Article  CAS  PubMed  Google Scholar 

  35. Haddox, M. K., and Russell, D. H., Ornithine decarboxylase from calf-liver. Purification and properties. Biochemistry20 (1981) 6721–6729.

    Article  CAS  PubMed  Google Scholar 

  36. Hermes, J. D., Roeske, C. A., O'Leary, M. H., and Cleland, W. W., Use of multiple effects to determine enzyme mechanism and intrinsic isotope effects. Malic enzyme and glucose 6-phosphate dehydrogenase. Biochemistry21 (1982) 5106–14.

    Article  CAS  PubMed  Google Scholar 

  37. Huynh, Q. K., Sakakibara, R., Watanabe, T., and Wada, H., Primary structure of mitochondrial glutamic oxaloacetic transaminase from rat liver: Comparison with that of the pig heart isoenzyme. Biochem. biophys. Res. Commun.97 (1980) 474–9.

    Article  CAS  PubMed  Google Scholar 

  38. Julin, D. A., Heinrich, W., Toney, M. D., and Kirsch, J. F., Estimation of free energy barriers in the cytoplasmic and mitochondrial aspartate aminotransferase reactions probed by hydrogen-exchange kinetics of Cα-labelled amino acids with solvent. Biochemistry28 (1989) 3815–3821.

    Article  CAS  PubMed  Google Scholar 

  39. Julin, D. A., and Kirsch, J. F., Kinetic isotope effect studies on aspartate aminotransferase: Evidence for a concerted 1,3-prototropic shift mechanism for the cytoplasmic isoenzyme and L-aspartate and dichotomy in mechanism. Biochemistry28 (1989) 3825–3833.

    Article  CAS  PubMed  Google Scholar 

  40. Kahana, C., and Nathans, D., Nucleotide sequence of murine ornithine decarboxylase m-RNA. Proc. natl Acad. Sci. USA82 (1985) 1673–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kamitori, S., Hirotsu, K., Higuchi, T., Kondo, K., Inoue, K., Kuramitsu, S., Kagimiyama, H., Higuchi, Y., Yasuoka, N., Kusonoki, M., and Matsuura, Y., three-dimensional structure of aspartate aminotransferase fromEscherichia coli at 2.8 Å resolution. J. Biochem.104 (1988) 326–8.

    Article  Google Scholar 

  42. Kelland, J. G., Palcic, M. M., Pickard, M. A., and Vederas, J. C., Stereochemistry of lysine formation by meso diaminopimelate decarboxylase from wheat germ: Use of proton-carbon-13 NMR shift correlations to detect stereospecific deuterium labelling. Biochemistry24 (1985) 3263–3267.

    Article  CAS  PubMed  Google Scholar 

  43. Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H., and Christen, P., Mechanism of action of aspartate aminotransferase, proposed on the basis of its spatial structure. J. Molec. Biol.174 (1984) 497–525.

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi, Y., Kaufman, D. L., and Tobin, A. J., Glutamic acid decarboxylase cDNA: Nucleotide sequence encoding an enzymatically active fusion protein. J. Neurosci.7 (1987) 2768–2772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kondo, K., Wakabayashi, S., Yagi, T., and Kagimiyama, H., The complete amino acid sequence of aspartate aminotransferase fromEscherichia coli: sequence comparison with pig isoenzymes. Biochem. biophys. Res. Commun.122 (1984) 62–7.

    Article  CAS  PubMed  Google Scholar 

  46. Martini, F., Angelaccio, S., Pascarello, S., Barra, D., Bossa, F., and Schirch, V., The primary structure of rabbit liver cytosolic serine hydroxymethyltransferase. J. biol. Chem.262 (1987) 5499–5509.

    Article  CAS  PubMed  Google Scholar 

  47. Martini, F., Angelaccio, S., Barra, D., Pascarello, S., Maras, B., Doonan, S., and Bossa, F., The primary structure of mitochondrial aspartate aminotransferase from human heart. Biochem. biophys. Acta832 (1985) 46–51.

    CAS  PubMed  Google Scholar 

  48. Mishin, A. A., and Sukhareva, B. S., Glutamate decarboxylase fromEscherichia coli: Catalytic role of a histidine residue. Dokl. Acad. Sci. SSSR290 (1986) 1268–1271.

    CAS  Google Scholar 

  49. Morino, Y., and Nagashima, F., Pyridoxal phosphate binding site in enzymes: reduction and comparison of sequences. Meth. Enzymol.106 (1984) 116–137.

    Article  CAS  Google Scholar 

  50. O'Leary, M. H., Yamada, H., and Yapp, C. J., Multiple isotope effects of glutamate decarboxylase. Biochemistry20 (1981) 1476–1481.

    Article  CAS  PubMed  Google Scholar 

  51. O'Leary, M. H., Enzymatic catalysis of decarboxylation, in: Bioorganic Chemistry: Enzyme Action, vol. 1, pp. 259–75. Ed. E. E. van Tamelen. Academic Press, New York 1977.

    Google Scholar 

  52. Palekar, A. G., Tate, S. S., and Meister, A., Stereospecific decarboxylation of specifically labelled14C labelled carboxyl aminomalonic acids by L-aspartate. Biochemistry10 (1971) 2180–2.

    Article  CAS  PubMed  Google Scholar 

  53. Palekar, A. G., Tate, S. S., and Meister, A., Rat liver aminomalonate decarboxylase, identity with cytoplasmic serine hydroxymethylase and allothreonine aldolase. J. biol. Chem.248 (1973) 1158–67.

    Article  CAS  PubMed  Google Scholar 

  54. Phillips, M. A., Coffino, P., and Wang, C. C., Cloning and sequencing of the ornithine decarboxylase gene gromtrypansoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition. J. biol. Chem.262 (1987) 8721–8727.

    Article  CAS  PubMed  Google Scholar 

  55. Plamann, M. D., Stauffer, L., Urbanowski, M. L., and Stauffer, G. V., Complete nucleotide sequence of theE. coli Gly A. Gene. Nucl. Acid Res.11 (1983) 2065–2075.

    Article  CAS  Google Scholar 

  56. Sabo, D. L., and Fischer, E. H., Chemical properties ofE. coli lysine decarboxylase including a segment of its pyridoxal 5′-phosphate binding site. Biochemistry13 (1974) 670–6.

    Article  CAS  PubMed  Google Scholar 

  57. Schirch, L., Serine hydroxymethylase. Meth. Enzymol.17 (1971) 335–40.

    Article  Google Scholar 

  58. Schirch, L., Serine hydroxymethyltransferase. Adv. Enzymol.53 (1982) 83–112.

    CAS  PubMed  Google Scholar 

  59. Shlyapnikov, S. V., Myasnikov, A. N., Severin, E. S., Myagkova, M. A., Demedkina, T. V., Torchinskii, Yu. M., and Braunstein, A. E., Primary structure of cytoplasmic aspartate aminotransferase from chicken heart. IV Structure of cyanogen bromide peptides and the complete amino acid sequence. Bioorg. Khim.6 (1980) 876–880.

    CAS  Google Scholar 

  60. Shostack, K., and Schirch, V., Serine hydroxymethyltransferase: Mechanism of the racemisation and transamination of D- and L-alanine. Biochemistry27 (1988) 8007–14.

    Article  Google Scholar 

  61. Smith, D. L., Ringe, D., Finlayson, W. L., and Kirsch, J. F., Preliminary X-ray data for aspartate aminotransferase fromEscherichia coli. J. molec. Biol.191 (1986) 301.

    Article  CAS  PubMed  Google Scholar 

  62. Smith, D. M., Ph. D. Thesis, Southampton University (Science Faculty) 1990.

  63. Stevenson, D. E., Akhtar, M., and Gani, D., Fern L-methionine decarboxylase: purification characterisation, substrate specificity, abortive transamination of the coenzyme and; stereochemical course of substrate decarboxylation and abortive transamination. Biochemistry29 (1988) 7631–7647.

    Article  Google Scholar 

  64. Stevenson, D. E., Akhtar, M., and Gani, D., Streptomyces L-methionine decarboxylase: purification and properties of the enzyme; stereochemical course of substrate decarboxylation. Biochemistry29 (1990) 7660–7666.

    Article  CAS  PubMed  Google Scholar 

  65. Stevenson, D. E., Akhtar, M., and Gani, D., Structural and mechanistic studies of methionine decarboxylase fromDryopteris filix-mas. Tet. Lett.27 (1986) 5661–5664.

    Article  CAS  Google Scholar 

  66. Stragier, P., Danos, O., and Patte, J. C., Regulation of diaminopimelate decarboxylase synthesis inEscherichia coli. II. Nucleotide sequence of the lys A gene and its regulatory region. J. molec. Biol.168 (1983) 321–331.

    Article  CAS  PubMed  Google Scholar 

  67. Strausbach, P. H., and Fischer, E. H., Chemical and physical properties ofEscherichia coli glutamate decarboxylase. Biochemistry9 (1970) 233–226.

    Google Scholar 

  68. Sukhareva, B. S., and Braunstein, A. E., Nature of the interaction ofE. coli glutamate decarboxylase with substrate and substrate analogs. J. molec. Biol. S.S.R.,51 (1971) 302–317.

    Google Scholar 

  69. Tanizawa, K., Yoshimura, T., Asada, Y., Sawada, S., Misomo, H., and Soda, K., Stereochemistry of proton abstraction by lysine and ornithine ω-aminotransferases. Biochemistry21 (1982) 1104–1108.

    Article  CAS  PubMed  Google Scholar 

  70. Thomas, N. R., Schirch, V., and Gani, D., Synthesis of (2R)- and (2S)-[1-13C]2-Amino-2-methylmalonic acid, probes for the serine hydroxymethyltransferase reaction: stereospecific decarboxylation of the 2-pro-R carboxy group with the retention of configuration. J. chem. Soc. chem. Comm. (1990) 400–402.

  71. Thomas, N. R., and Gani, D., Synthesis of (2R) and (2S)-[1-13C]-2-amino-2-methylmalonic acid: chiral substrates for serine hydroxymethyltransferase. Tetrahedron47 (1991) 497–506.

    Article  CAS  Google Scholar 

  72. Transaminases. Eds P. Christen and D. E. Metzler. Wiley-Interscience, New York 1985.

    Google Scholar 

  73. Vaaler, G. L., Brasch, M. A., and Snell, E. E., Pyridoxal 5-phosphate dependent histidine decarboxylase. Nucleotide sequence of the hdc gene and the corresponding amino acid sequence. J. biol. Chem.261 (1986) 11010–11014.

    Article  CAS  PubMed  Google Scholar 

  74. Van Kranen, H. J., Van de Zande, L., Van Kreijl, C. F., Bisschop, A., and Weiringa, B., Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA. Gene60 (1987) 145–155.

    Article  PubMed  Google Scholar 

  75. Voet, J. G., Hindenlang, D. M., Blanck, T. J. J., Ulevitch, R. J., Kallen, R. G., and Dunathan, H. C. Stereochemistry of pyridoxal phosphate enzymes. Absolute stereochemistry of cofactor C′4 protonation in the transamination of holoserine hydroxymethylase by D-alanine. J. biol. Chem.248 (1973) 841–2.

    Article  CAS  PubMed  Google Scholar 

  76. Yamada, H., and O'Leary, M. H., A solvent isotope effect probe for enzyme mediated reactions. J. Am. chem. Soc.99 (1977) 1660–1661.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Much of the work described here was undertaken in the Chemistry Department at Southhampton University prior to our move to St. Andrews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.M., Thomas, N.R. & Gani, D. A comparison of pyridoxal 5′-phosphate dependent decarboxylase and transaminase enzymes at a molecular level. Experientia 47, 1104–1118 (1991). https://doi.org/10.1007/BF01918374

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01918374

Key words

Navigation