Skip to main content
Log in

Acyl-carnitine effects on isolated cardiac mitochondria and erythrocytes

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The effects of various long-chain acyl-carnitines (AC) on mitochondrial functions and red cell membrane stability were studied. Lower concentrations slightly stimulate respiration-dependent functions such as phosphorylation rate and Ca++ uptake velocity, whereas higher concentrations inhibit these functions with concomitant depression of the ATP/O ratio. The order of effectiveness among the AC is very similar for different mitochondrial function. The differences among AC in their actions on red cell stability in hypotonic media and their differences in influence on mitochondiral functions exhibit less resemblance. The relative order of erythrolytic concentrations of AC follows the order of their critical micellar concentration. Model calculations indicate that the concentrations of AC found in ischemic hearts are below those which exhibit inhibitory effects in vitro. Ultrastructural changes in mitochondria incubated with AC are different from those found in ischemic tissue. From this, it seems questionable whether the elevated AC levels in ischemic hearts are indeed as importan for the development of membrane damage as is often supposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams RJ, Cohen DW, Gupte S, Johnson ID, Wallick ET, Wang T, Schwartz A (1979) In vitro effect of palmitylcarnitine on cardiac plasma membrane Na,K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and Ca2+ transport. J Biol Chem 254:12404–12410

    PubMed  Google Scholar 

  2. Akerboom PPM, Bookelmann A, Tager JM (1977) Control of ATP transport across the mitochondrial membrane in isolated rat liver cells. FEBS Lett 74:50–54

    PubMed  Google Scholar 

  3. Babour RL, Chan SH (1979) Regulation of palmitoyl-CoA inhibition of mitochondrial adenine nucleotide transport by cytosolic fatty acid binding protein. Biochem Biophys Res Commun 89:1168–1177

    PubMed  Google Scholar 

  4. Barry JR, Tate CA, van Winkle WB, Wood JM, Entman ML (1978) Palmityl carnitine inhibition of the calcium pump in cardiac sarcoplasmic reticulum. A Possible ro le in myocardial ischemia. Life Sci 23:391–402.

    PubMed  Google Scholar 

  5. Beatrice MC, Pfeiffer DR (1981) The mechanism of palmitoyl-CoA inhibition of Ca++ uptake in liver and heart mitochondria. Biochem J 194:71–77

    PubMed  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  7. Chapman D, Gómez-Fernández, JC, Goni FM (1979) Intrinsic protein lipid interations. Physical and biochemical evidence. FEBS Lett 98:211–223

    PubMed  Google Scholar 

  8. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. In: Methods in Enzymology, Estabrook RW, Pullman ME (eds) Vol 10 Oxidation and Phosphorylation, pp 41–47. Academic Press New York

    Google Scholar 

  9. Edoute J, Kotzé JCN, Lochner A (1979) Oxidative phosphorylation rate: An index for evaluation of mitochondrial function in myocardial ischemia. J Mol Cell Cardiol 11:831–833

    PubMed  Google Scholar 

  10. Feuvray D (1981) Structural, functional and metabolic correlates in ischemic hearts: effects of substrates. Am J Physiol 240:H391-H398

    PubMed  Google Scholar 

  11. Folts JM, Shug AL, Koke JR, Bittar N (1978) Protection of the ischemic dog myocardium with carnitine. Am J Cardiol 41:1209–1214

    PubMed  Google Scholar 

  12. Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    PubMed  Google Scholar 

  13. Hunneman DH, Schweickhardt C, Gebhard MM, Preusse CJ (1981) Intramyocardial FFA concentration after treatment with verapamil. Pflügers Arch, suppl to vol 391:R12

    Google Scholar 

  14. Hunneman DH, Schweickhardt C (1982) Mass fragmentographic determination of myocardial free fatty acids. J Mol Cell Cardiol 14:339–351

    PubMed  Google Scholar 

  15. Idell-Wenger JA, Grotjohann LW, Nelly JR (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253:4310–4318

    PubMed  Google Scholar 

  16. Katz AM, Messineo FC, Pinto PB (1980) The effects of palmitic acid and palmityl carnitine on calcium sequestration by isolated rabbit skeletal sarcoplasmic reticulum vesicles. Clin Res 28:470A

    Google Scholar 

  17. Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16

    PubMed  Google Scholar 

  18. Kjekshus JK, Mjøs OD (1972) Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest 51:1767–1776

    PubMed  Google Scholar 

  19. Kovatchev S, Vaz WLC, Eibl H (1981) Lipid depence of the membrane-bound D-lactate dehydrogenase of escherichia coli. J Biol Chem 256:1036–10374

    Google Scholar 

  20. Lamers JMJ, Hülsmann WC (1977) Inhibition of (Na++K+) stimulated ATPase of heart by fatty acids. J Mol Cell Cardiol 9: 343–346

    PubMed  Google Scholar 

  21. La Noue KF, Watts JA, Koch CD (1981) Adenine nucleotide transport during cardiac ischemia. Am J Physiol 241:663–671

    Google Scholar 

  22. Liedtke AJ, Nellis S, Neely JR (1978) Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium. Circ Res 43:652–661

    PubMed  Google Scholar 

  23. Liedtke AJ, Nellis SH (1979) Effects of carnitine in ischemic and fatty acid supplemented swine hearts. J Clin Invest 64:440–447

    PubMed  Google Scholar 

  24. Liedtke AJ, Nellis SH, Whitesell LF (1981) Effects of carnitine isomers on fatty acid metabolism in ischemic swine hearts. Circ Res 48:859–866

    PubMed  Google Scholar 

  25. Lochner A, van Niederkerk I, Kotzé JCN (1981) Mitochondrial acyl CoA, adenine nucleotide translocase activity and oxidative phosphorylation in myocardial ischemia. J Mol Cell Cardiol 13:991–997

    PubMed  Google Scholar 

  26. Neely JR, Rovetto MJ, Whitmer JT (1976) Rate-limiting steps of carbohydrate and fatty acid metabolism in ischemic hearts. Acta Med Scand Suppl 587:9–15

    Google Scholar 

  27. Oram JF, Bennetch SL, Neely JR (1973) Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem 248:5299–5309

    PubMed  Google Scholar 

  28. Owens K, Kennett FF, Weglicki WB (1982) Effects of fatty acid intermediates on Na+−K+-ATPase activity of cardiac sarcolemma. Am J Physiol 242:H456-H461

    PubMed  Google Scholar 

  29. Pande SV, Blanchaer MD (1971) Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem 246:402–411

    PubMed  Google Scholar 

  30. Pande SV (1981) Uneven distribution of palmitoyl carnitine in solutions because of migration to air/water interphase. Biochim Biophys Acta 663:669–673

    PubMed  Google Scholar 

  31. Parpart AK, Lorenz PB, Parpart ER, Gregg JR, Chose AM (1947) The osmotic resistance (fragility) of human red cells. J Clin Invest 26:636–640

    Google Scholar 

  32. Piper HM, Sezer O, Schwartz P, Hütter JF, Spieckermann PG (1983) Fatty acid-membrane interactions in isolated cardiac mitochondria and erythrocytes. Biochim Biophys Acta 732:193–203

    PubMed  Google Scholar 

  33. Portenhauser R, Schäfer G (1969) Palmitoylcarnitine and tricarboxylic-cycle oxidations. FEBS Lett 2:281–285

    PubMed  Google Scholar 

  34. Raz A, Livne A (1973) Differential effects of lipids on the osmotic fragility of erythrocytes. Biochim Biophys Acta 311:222–229

    PubMed  Google Scholar 

  35. Sanderman jr H (1978) Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515: 209–237

    PubMed  Google Scholar 

  36. Scarpa A, Graziotti P (1973) Mechanism for intracellular calcium regulation in heart. I. Stopped flow measurement of Ca2+, measurement of Ca2+ uptake by cardiac mitochondria. J Gen Physiol 62:756–772

    PubMed  Google Scholar 

  37. Schwartz A, Wood JM, Allen JC, Bornet EP, Entman ML, Goldstein MA, Sordahl LA, Sucki M, Lewis RM (1973) Biochemical and morphological correlates if cardiac ischemia I. Membrane systems. Am J Cardiol 32:46–61

    Google Scholar 

  38. Seemann P (1966) Erythrocyte membrane stabilization by local anaesthetics and tranquilizers. Biochem Pharmacol 15:1767–1774

    Google Scholar 

  39. Shug AL, Lerner E, Elson O, Shrago E (1971) The inhibition of adenine nucleotide translocase by oleoyl CoA and its reversal in rat liver mitochondria. Biochem Biophys Res Commun 43:557–563

    PubMed  Google Scholar 

  40. Shug AL, Shrago E, Bittar N, Folts JD, Koke JR (1975) Acyl-CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am J Physiol 228:689–692

    PubMed  Google Scholar 

  41. Shug AL, Thomasen JH, Folts JD, Bittar N, Klein MI, Koke JR, Huth PJ (1978) Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys. 187:25–33

    PubMed  Google Scholar 

  42. Shug AL, Hayes B, Huth PJ, Thomsen JH, Bittar N, Hall PV, Demling RH (1980) Changes in carnitine-linked metabolism during ischemia, thermal injury, and shock. In: Frenkel RA, Mc Garry JD (eds) Carnitine biosynthesis, metabolism and functions, Academic Press, New York, pp 321–339

    Google Scholar 

  43. Sordahl LA, Schwartz A (1967) Effects of Dipyridamole on heart muscle mitochondria. Molec Pharmacol 3:509–515

    Google Scholar 

  44. Thomsen JH, Shug AL, Yap VU, Patel AK, Karras TJ, De Felice SL (1979) Improved stress tolerance of the ischemic human myocardium after carnitine administration. Am J Cardiol 43:300–306

    PubMed  Google Scholar 

  45. Van der Vusse GJ, Roemen THM, Prinzen FW, Reneman RS (1981) Uptake and accumulation of non-esterified fatty acids (NEFA) in ischemic dog myocardium. J Mol Cell Cardiol 13 suppl 1:93

    PubMed  Google Scholar 

  46. Van der Vusse GJ, Roemen THM, Prinzen FW, Conmans WA, Reneman RS (1982) Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50:538–546

    PubMed  Google Scholar 

  47. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR (1978) Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253:4305–4309

    PubMed  Google Scholar 

  48. Wood JM, Bush B, Pitts BJR, Schwartz A (1977) Inhibition of bovine heart Na+K+ ATPase by palmityl carnitine and palmityl CoA. Biochem Biophys Res. Commun 74:677–684

    PubMed  Google Scholar 

  49. Yalkowsky SH, Zografi G (1970) Potentiometric titration of monomeric and micellar acylcarnitines. J Pharm Sci 59:798–802

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft, SFB 89, Kardiologie Göttingen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piper, M.H., Sezer, O., Schwartz, P. et al. Acyl-carnitine effects on isolated cardiac mitochondria and erythrocytes. Basic Res Cardiol 79, 186–198 (1984). https://doi.org/10.1007/BF01908305

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908305

Key words

Navigation