Skip to main content
Log in

Transcellular ion currents and extension ofNeurospora crassa hyphae

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Hyphae ofNeurospora crassa, like many other tipgrowing organisms, drive endogenous electric currents through themselves such that positive charges flow into the apical region and exit from the trunk. In order to identify the ions that carry the current, the complete growth medium was replaced by media lacking various constituents. Omission of K+ or of phosphate diminished the zone of inward current, effectively shifting the current pattern towards the apex. Omission of glucose markedly reduced both inward and outward currents; addition of sodium azide virtually abolished the flow of electric current. Growing hyphae also generate a longitudinal pH gradient: the medium surrounding the apex is slightly more alkaline than the bulk phase, while medium adjacent to the trunk turns acid. The results suggest thatNeurospora hyphae generate a proton current; protons are expelled distally by the H+-ATPase and return into the apical region by a number of pathways, including the symport of protons with phosphate and potassium ions. Calcium influx may also contribute to the electric current that enters the apical region. There seems to be no simple obligatory linkage between the intensity of the transcellular electric current and the rate of hyphal extension. Calcium ions, however, are required in micromolar concentrations for extensions and morphogenesis of hyphal tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blatt, M.R., Slayman, C.L. 1987. Role of “active” potassium transport in the regulation of cytoplasmic pH by non-animal cells.Proc. Natl. Acad. Sci. USA 84:2737–2741

    Google Scholar 

  • Caldwell, P.C. 1970. Calcium chelation and buffers.In: Calcium and Cellular Functions. A.W. Cuthbert, editor. pp. 10–16. St. Martins, London

    Google Scholar 

  • Caldwell, J.H., Van Brunt, J., Harold, F.M. 1986. Calcium-dependent anion channel in the water moldBlastocladiella emersonii.J. Membrane Biol. 89:85–97

    Google Scholar 

  • Cockburn, M., Earnshaw, P., Eddy, A.A. 1975. The stoichiometry of the absorption of protons with phosphate andl-glutamate by yeasts of the genusSaccharomyces.Biochem. J. 146:705–712

    Google Scholar 

  • Davis, R.H., Serres, F.J. de 1970. Genetic and microbiological research techniques forNeurospora crassa.Methods Enzymol. 17A:79–149

    Google Scholar 

  • Galpin, M.F.J., Jennings, D.M. 1975a. Histochemical study of the hyphae and the distribution of adenosine triphosphatase inDendryphiella salina.Trans. Br. Mycol. Soc. 65:477–483

    Google Scholar 

  • Galpin, M.F.J. Jennings, D.M. 1975b. Potassium and ATPase inPhycomyces.Trans. Br. Mycol. Soc. 66:151–153

    Google Scholar 

  • Goffeau, A., Slayman, C.W. 1981. The proton-translocating ATPase of the fungal plasma membrane.Biochim. Biophys. Acta 639:197–223

    Google Scholar 

  • Gooday, G.W. 1983. The hyphal tip.In: Fungal Differentiation, A Contemporary Synthesis. J.E. Smith, editor. pp. 315–356. Marcel Dekker, New York

    Google Scholar 

  • Gow, N.A.R. 1984. Transhyphal electrical currents in fungi.J. Gen. Microbiol. 130:3313–3318

    Google Scholar 

  • Gow, N.A.R., Kropf, D.L., Harold, F.M. 1984. Growing hyphae ofAchyla, bisexualis generate a longitudinal pH gradient in the surrounding medium.J. Gen. Microbiol. 130:2967–2974

    Google Scholar 

  • Gradmann, D., Hansen, U.P., Long, W.S., Slayman, C.L., Warncke, J. 1978. Current-voltage relationships for the plasma membrane and its principal electrogenic pump inNeurospora crassa.J. Membrane Biol. 39:333–367

    Google Scholar 

  • Grove, S.N. 1978. The cytology of hyphal tip growth.In: The Filamentous Fungi Vol. III. J.E. Smith and D.R. Berry, editors. pp. 28–50. John Wiley, New York

    Google Scholar 

  • Harold, F.M., Caldwell, J.H., Schreurs, W.J.A. 1987. Endogenous electric currents and polarized growth of fungal hyphae.In: Spatial Organization in Eukaryotic Microbes. R.K. Poole and A.P.J. Trinci, editors. Special Publications of the Society for General Microbiology (in press)

  • Hepler, P.K., Wayne, R.O. 1985. Calcium and plant development.Annu. Rev. Plant. Physiol. 36:397–439

    Google Scholar 

  • Jaffe, L.A., Weisenseel, M.H., Jaffe, L.F. 1975. Calcium accumulations within the growing tips of pollen tubes.J. Cell Biol. 67:488–492

    Google Scholar 

  • Jaffe, L.F., Nuccitelli, R. 1974. An ultrasensitive vibrating, probe for measuring steady electrical currents.J. Cell. Biol. 63:614–628

    Google Scholar 

  • Jaffe, L.F., Nuccitelli, R. 1977. Electrical control of development.Annu. Rev. Biophys. Bioeng. 6:445–476

    Google Scholar 

  • Jaffe, L.F., Walsby, A.E. 1985. An investigation of extracellular electrical currents around cyanobacterial filaments.Biol. Bull. 168:476–481

    Google Scholar 

  • Kropf, D.L. 1986. Electrophysiological properties ofAchyla hyphae: Ionic currents studied by intracellular potential recording.J. Cell Biol. 102:1209–1216

    Google Scholar 

  • Kropf, D.L., Caldwell, J.H., Gow, N.A.R., Harold, F.M. 1984. Transcellular ion currents in the water moldAchlya. Amino acid proton symport as a mechanism of current entry.J. Cell Biol. 99:486–496

    Google Scholar 

  • Mishra, N.C., Tatum, E.L. 1972. Effect ofl-sorbose on polysaccharide synthetases ofNeurospora crassa.Proc. Natl. Acad. Sci. USA 69:313–317

    Google Scholar 

  • Nuccitelli, R.: 1982. Transcellular ion currents: Signals and effectors of cell polarity.Modern Cell Biol. 2:451–481

    Google Scholar 

  • Nuccitelli, R. (Editor) 1986. Ionic Currents in Development. A.R. Liss, New York

    Google Scholar 

  • Picton, J.M., Steer, M.W. 1985. The effects of ruthenium red, fluorescein isothiocyanate and trifluoperazine on vesicle transport, vesicle fusion and tip extension in pollen tubes.Planta 163:20–26

    Google Scholar 

  • Reiss, H.-D., Herth, W. 1985. Nifedipine-sensitive calcium channels are involved in polar growth of lily pollen tubes.J. Cell Sci. 76:247–254

    Google Scholar 

  • Rodriguez-Navarro, A., Blatt, M.R., Slayman, C.L. 1986. A potassium-proton symport inNeurospora crassa.J. Gen. Physiol. 87:649–674

    Google Scholar 

  • Sanders, D.L., Hansen, U.P., Slayman, C.L. 1981. Role of the plasma membrane proton pump in pH regulation in non-animal cells.Proc. Natl. Acad. Sci. USA 78:5903–5907

    Google Scholar 

  • Sanders, D.L., Slayman, C.L. 1982. Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganismNeurospora crassa.J. Gen. Physiol. 80:377–402

    Google Scholar 

  • Sanders, D.L., Slayman, C.L., Pall, M.L. 1983. Stoichiometry of H+/amino acid cotransport inNeurospora crassa revealed by current-voltage analysis.Biochim. Biophys. Acta 735:67–76

    Google Scholar 

  • Saunders, M.J. 1986. Cytokinin activation and redistribution of plasma-membrane ion channels inFunaria.Planta 167:402–409

    Google Scholar 

  • Slayman, C.L. 1965a. Electrical properties ofNeurospora crassa. Effects of external cations on the intracellular potential.J. Gen. Physiol. 49:69–92

    Google Scholar 

  • Slayman, C.L. 1965b Electrical properties ofNeurospora crassa. Respiration and the intracellular potential.J. Gen. Physiol. 49:93–116

    Google Scholar 

  • Slayman, C.L. 1970. Movement of ions and electrogenesis in microorganisms.Am Zool. 10:377–392

    Google Scholar 

  • Slayman, C.L. 1980. Transport control phenomena inNeurospora.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. pp. 179–180. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Slayman, C.L., Slayman, C.W. 1962. Measurement of membrane potentials inNeurospora.Science 136:876–877

    Google Scholar 

  • Slayman, C.L., Slayman, C.W. 1974. Depolarization of the plasma membrane ofNeurospora crassa during active transport of glucose.Proc. Natl. Acad. Sci. USA 71:1935–1939

    Google Scholar 

  • Slayman, C.L., Slayman, C.W. 1979. Whole cells for the study of transport linked to membrane potential:Neurospora crassa.Methods Enzymol. 55:656–666

    Google Scholar 

  • Ulaszewski, S., Van Herck, J.-C., Dufour, J.-P., Kulpa, J., Nieuwenhuis, B., Goffeau, A. 1987. A single mutation confers vanadate resistance to the plasma membrane H+-ATPase from the yeastSchizosaccharomyces pombe.J. Biol. Chem. 262:223–228

    Google Scholar 

  • Ullrich-Eberius, C.I., Novacky, A., Van Bel, A.J.E. 1984. Phosphate uptake inLemma gibba: Energetics and kinetics.Planta 161:46–52

    Google Scholar 

  • Wessels, J.G.H. 1986. Cell wall synthesis in apical hyphal growth.Int. Rev. Cytol. 104:37–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, Y., Schmid, J., Caldwell, J.H. et al. Transcellular ion currents and extension ofNeurospora crassa hyphae. J. Membrain Biol. 101, 33–41 (1988). https://doi.org/10.1007/BF01872817

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872817

Key Words

Navigation