Skip to main content
Log in

Diffusive water permeability in isolated kidney proximal tubular cells: Nature of the cellular water pathways

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The diffusive water permeability (P d ) of the plasma membrane of proximal kidney tubule cells was measured using a1H-NMR technique. The values obtained for the exchange time (T ex) across the membrane were independent of the cytocrit and of the Mn2+ concentration (in the range 2.5 to 5mm). At 25°C the calculatedP d value was (per cm2 of outer surface area without taking into account membrane invaginations) 197±17 μm/sec. This value equals 22.3±1.9 μm/sec when the invaginations are taken into account. Cell exposure to 2.5mm parachloromercuribenzenesulfonic acid,pCMBS, (for 20 to 35 min) reducedP d to 45% of its control value. Fivemm dithiothreitol, DTT, reverted this effect. The activation energy for the diffusive water flux was 5.2±1.0 kcal/mol under control conditions. It increased to 9.1±2.2 kcal/mol in the presence of 2.5mm pCMBS. Using our previous values for the osmotic water permeability (P os) in proximal straight tubular cells theP os/P d ratio equals 18±1, under control conditions, and 3.2±0.3 in the presence ofpCMBS. These experimental results indicate the presence of pathways for water, formed by proteins, crossing these membranes, which are closed bypCMBS. Assuming laminar flow (within the pore), fromP os/P d of 13 to 18 an unreasonably large pore radius of 12 to 15 Å is calculated which would not hinder cell entry of known extracellular markers. Alternatively, for a single-file pore, 11 to 20 would be the number of water molecules which would be in tandem inside the pore. The water permeability remaining in the presence ofpCMBS indicates water permeation through the lipid bilayer. There are similarities between these results and those obtained in human red blood cells and in the apical cell membrane of the toad urinary bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpini, G., Garrick, R.A., Jones, M.J.T., Nuñez, R., Tavoloni, N. 1986. Water and non electrolyte permeability of isolated rat hepatocytes.Am. J. Physiol. 251:C872-C882

    Google Scholar 

  • Andersen, O.S., Procopio, J. 1980. Ion movements through gramicidin A channels.Acta Physiol. Scand. 481:27–35

    Google Scholar 

  • Araujo, E., Persechini, P.M., Oliveira-Castro, G.M. 1986. Electrophysiology of phagocytic membranes. Role of divalent cations in membrane hyperpolarization of macrophage polykarions.Biochim. Biophys. Acta 856:362–372

    Google Scholar 

  • Barry, P.H., Diamond, J.M. 1984. Effects of unstirred layers on membrane phenomena.Physiol. Rev. 64:763–856

    Google Scholar 

  • Benga, G., Pop, V.I., Popescu, O., Ionescu, M., Mihele, V. 1983. Water exchange through erythrocyte membranes: Nuclear magnetic resonance studies on the effects of inhibitors and of chemical modification of human membranes.J. Membrane Biol. 76:129–137

    Google Scholar 

  • Benz, R., Tosteson, M.T., Schubert, D. 1984. Formation and properties of tetramers of band 3 protein from human erythrocyte membranes in planar lipid bilayers.Biochim. Biophys. Acta 775:347–355

    Google Scholar 

  • Berry, C.A. 1985. Characteristics of water diffusion in the rabbit proximal convoluted tubule.Am. J. Physiol. 249:F729-F738

    Google Scholar 

  • Carpi-Medina, P. 1986. Estudios sobre las permeabilidades difusivas y osmóticas del tubulo proximal de riñón de conejo. Ph.Sc. Thesis, IVIC, Caracas, Venezuela

    Google Scholar 

  • Carpi-Medina, P., Leon, V., Espidel, J., Whittembury, G. 1987a. Water diffusive permeability of isolated proximal tubule kidney cells measured with proton NMR.Kidney Int. 31:444

    Google Scholar 

  • Carpi-Medina, P., Leon, V., Linares, H., Whittembury, G., Gonzalez, E. 1984a. Permeabilidad acuosa difusional (P d ) y osmótica (P os) de la membrana basolateral de tubulos proximales de conejo.In: Primeras Jornadas Venezolanas de Nefrología, Caracas, p. 31

  • Carpi-Medina, P., Lindemann, B., Gonzalez, E., Whittembury, G. 1984b. The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolarity.Pfluegers Arch. 400:343–348

    Google Scholar 

  • Carpi-Medina, P., León, V., Whittembury, G., 1987b. Water diffusive permeability of isolated proximal tubule rabbit kidney cells measured with proton NMR. Xth Int. Congress Nephrol., London

  • Carpi-Medina, P., Whittembury, G. 1987c. Inhibition bypCMBS of water osmotic (P os) and diffusive (P d ) permeability in rabbit kidney proximal cells.Hoppe Seyler's Z. Biol. Chem. Membranforum, Frankfurt

  • Cass, A., Finkelstein, A. 1967. Water permeability of thin lipid membranes.J. Gen. Physiol. 50:1765–1784

    Google Scholar 

  • Cohen, B.E. 1975. The permeability of liposomes to nonelectrolytes I. Activation energies for permeation.J. Membrane Biol. 20:205–234

    Google Scholar 

  • Conlon, T., Outhred, R. 1972. Water diffusion permeability of erythrocytes using an NMR technique.Biochim. Biophys. Acta 288:354–361

    Google Scholar 

  • Conlon, T., Outhred, R. 1978. The temperature dependence of erythrocyte water diffusion permeability.Biochim. Biophys. Acta 511:408–418

    Google Scholar 

  • Fabry, M.E., Einsenstadt, M. 1975. Water exchange between red cells and plasma.Biophys. J. 15:1101–1110

    Google Scholar 

  • Fabry, M.E., Einsenstadt, M. 1978. Water exchange across red cell membranes: II. Measurement by nuclear magnetic resonanceT 1,T 2 andT 12 hybrid relaxation. The effects of osmolarity, cell volume, and medium.J. Membrane Biol. 42:375–398

    Google Scholar 

  • Fettiplace, R., Haydon, D.A. 1980. Water permeability of lipid membranes.Physiol. Rev. 60:510–550

    Google Scholar 

  • Finkelstein, A. 1987. Water Movement through Lipid Bilayers, Pores and Plasma Membranes. Theory and Reality. John Wiley & Sons, New York

    Google Scholar 

  • Finkelstein, A., Andersen, O.S. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport.J. Membrane Biol. 59:155–171

    Google Scholar 

  • Finkelstein, A., Rosenberg, P.E. 1979. Single file transport: Implications for ion and water movement through gramicidin A channels in membranes.In: Membrane Transport Processes. C.F. Stevens and R.W. Tsien, editors. Vol. 3, pp. 73–88. New York

  • Fischbarg, J., Liebovitch, L.S., Koniarek, J.P. 1987. Inhibition of transepithelial osmotic flow by blockers of the glucose transporter.Biochim. Biophys. Acta 898:266–274

    Google Scholar 

  • Fornili, S.L., Vercauteren, D.P., Clementi, E. 1984. Water structure in the gramicidin A transmembrane channel.J. Biomol. Struct. Dynamics 1:1281–1297

    Google Scholar 

  • Gonzalez, E., Carpi-Medina, P., Linares, H., Whittembury, G. 1984. Water osmotic permeability of the apical membrane of proximal straight tubular (PST) cells.Pfluegers Arch. 402:337–339

    Google Scholar 

  • Gonzalez, E., Carpi-Medina, P., Whittembury, G. 1982. Cell osmotic water permeability of isolated rabbit proximal straight tubules.Am. J. Physiol. 242:F321-F330

    Google Scholar 

  • Hansson-Mild, K., Lovtrup, S. 1985. Movement and structure of water in animal cells. Ideas and experiments.Biochim. Biophys. Acta 822:155–167

    Google Scholar 

  • Heckmann, K. 1965. Zur Theorie der “Single File-Diffusion II.”Physikalische Chemie 46:1–25

    Google Scholar 

  • Heeswijk, M.P.E. van, Os., C.H. van 1986. Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine.J. Membrane Biol. 92:183–193

    Google Scholar 

  • Hildebrand, J.H. 1971. Motions of molecules in liquids: Viscosity and diffusivity.Science 174:490–493

    Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Hodgkin, A.L., Keynes, R.D. 1955. The potassium permeability of a giant nerve fibre.J. Physiol. (London) 128:61–88

    Google Scholar 

  • Klotz, I.M. 1985. Ligand-receptor interactions: Facts and fantasies.Quart. Rev. Biophys. 18:227–259

    Google Scholar 

  • Kohler, H.H., Heckmann, K. 1980. Unidirectional fluxes in saturated single-file pores of biological and artificial membranes. II. Asymptotic behavior at high degrees of saturation.J. Theor. Biol. 85:575–595

    Google Scholar 

  • Kondo, Y., Imai, M. 1987. Effects of glutaraldehyde fixation on renal tubular function. I. Preservation of vasopressin-stimulated water and urea pathways in rat papillary collecting duct.Pfluegers Arch. 408:479–483

    Google Scholar 

  • Levine, S.D., Jacoby, M., Finkelstein, A. 1984. The water permeability of toad urinary bladder. II. The value ofP f /P d(w) for the antidiuretic hormone-induced water permeation pathway.J. Gen. Physiol. 83:543–561

    Google Scholar 

  • Lindemann, B. 1984a Real-time area-tracker records cellular volume changes from video images.Rev. Sci. Instr. 55:1788–1790

    Google Scholar 

  • Lindemann, B. 1984b. Steady state kinetics and flux ratio exponent of ionic diffusion through a lattice of fixed sites.Hoppe-Seyler's Z. Physiol. Chem. 365:252

    Google Scholar 

  • Longuet-Higgins, H.C., Austin, G. 1966. The kinetics of osmotic transport through pores of molecular dimensions.Biophys. J. 6:217–224

    Google Scholar 

  • McConnell, H.M. 1958. Reaction rates by nuclear magnetic resonance.J. Chem. Phys. 28:430–431

    Google Scholar 

  • Macey, R.I. 1984. Transport of water and urea in red blood cells.Am. J. Physiol. 246:C195-C203

    Google Scholar 

  • Mildwan, A.S., Cohn, M. 1963. Magnetic resonance studies of the interaction of the manganous ion with bovine serum albumin.Biochemistry 2:910–919

    Google Scholar 

  • Moura, T.F., Macey, R.I., Chien, D.Y., Karan, D., Santos, H. 1984. Thermodynamics of all-or-none water channel closure in red cells.J. Membrane Biol. 81:105–111

    Google Scholar 

  • Nagineni, N., Leveille, C.P., Lee, D.B.N., Yanagawa, N. 1984. Isolation of cells from rabbit proximal tubules by using a hyperosmolar intracellular like solution.Biochem. J. 223:353–358

    Google Scholar 

  • Parisi, M., Bourguet, J. 1983. The single file hypothesis and the water channels induced by antidiuretic hormone.J. Membrane Biol. 71:189–193

    Google Scholar 

  • Pirkle, J.L., Ashley, D.L., Goldstein, J.H. 1979. Pulse nuclear magnetic resonance measurements of water exchange across erythrocyte membrane employing a low Mn concentration.Biophys. J. 25:389–406

    Google Scholar 

  • Pratz, J., Ripoche, P., Corman, B. 1986. Evidence for proteic water pathways in the luminal membrane of kidney proximal tubules.Biochim. Biophys. Acta 856:259–266

    Google Scholar 

  • Solomon, A.K. 1986. On the equivalent pore radius.J. Membrane Biol. 94:227–232

    Google Scholar 

  • Solomon, A.K., Chasan, G., Dix, J.A., Lukakovic, M.F., Toon, M.R., Verkman, A.S. 1983. Possible relation between anion transport and water flow in red cells.Ann. N.Y. Acad. Sci. 414:97–104

    Google Scholar 

  • Stein, W. 1986. Transport and diffusion across cell membranes. A. Press, Orlando

    Google Scholar 

  • Steward, M.C., Garson, M.J. 1985. Water permeability ofNecturus gallbladder epithelial cell membranes measured by nuclear magnetic resonance.J. Membrane Biol. 86:203–210

    Google Scholar 

  • Verkman, A.S., Wong, K.R. 1987. Proton nuclear magnetic resonance measurement of diffusional water permeability in suspended renal proximal tubules.Biophys. J. 51:717–723

    Google Scholar 

  • Vieira, F.L., Sch'afi, R.I., Solomon, A.K. 1970. The state of water in human and dog red cell membranes.J. Gen. Physiol. 55:451–466

    Google Scholar 

  • Vinay, P., Gougoux, A., Lemieux, G. 1984. Isolation of a pure suspension of rat proximal tubules.Am. J. Physiol. 241:F403-F411

    Google Scholar 

  • Weinstein, A.M., Windhager, E.E. 1985. Sodium Transport along the Proximal Tubule in the Kidney: Physiology and Pathophysiology. D.W. Seldin and G. Giebisch, editors. pp. 1033–1062. Raven, New York

    Google Scholar 

  • Welling, L.W., Grantham, J.J. 1972. Physical properties of isolated perfused renal tubules and tubular basement membranes.J. Clin. Invest. 51:1063–1075

    Google Scholar 

  • Welling, L.W., Welling, D.J. 1975. Surface areas of brush border and lateral cell walls in the rabbit proximal tubule.Kidney Int. 8:343–348

    Google Scholar 

  • Welling, D., Welling, L.W., Ochs, T.J. 1983. Video measurement of basolateral membrane hydraulic conductivity in proximal tubules.Am. J. Physiol. 245:F123-F129

    Google Scholar 

  • Whittembury, G., Carpi-Medina, P., Gonzalez, E., Linares, H. 1984. Effect of parachloromercurybenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules.Biochim. Biophys. Acta 775:365–373

    Google Scholar 

  • Whittembury, G., Paz-Aliaga, A., Biondi, A., Carpi-Medina, P., González, E., Linares, H. 1985. Pathways for volume flow and volume regulation in leaky epithelia.Pfluegers Arch. 405:Suppl.S17-S22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpi-Medina, P., León, V., Espidel, J. et al. Diffusive water permeability in isolated kidney proximal tubular cells: Nature of the cellular water pathways. J. Membrain Biol. 104, 35–43 (1988). https://doi.org/10.1007/BF01871900

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871900

Key Words

Navigation