Skip to main content
Log in

Sodium-calcium ion exchange in skeletal muscle sarcolemmal vesicles

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The Ca2+ permeability of rabbit skeletal muscle sarcolemmal vesicles was investigated by means of radioisotope flux measurements. A membrane vesicle fraction highly enriched in sarcolemma, as revealed by enzymatic markers, was obtained from the 22–27% region of sucrose gradients after isopycnic centrifugation. The ability of sarcolemmal vesicles to exchange Na+ for Ca2+ was investigated by measuring Ca2+ influx into and efflux from sarcolemmal vesicles in the presence and absence of a Na+ gradient. It was found that Ca2+ movements were enhanced in the direction of the higher Na+ concentration. When intra- and extravesicular Na+ concentrations were high, Na+−Na+ exchange predominated and Na+−Ca2+ exchange was low or absent. The presence of the Ca2+ ionophore A23187 in the dilution medium resulted in the rapid release of Ca2+ and the elimination of the Na+-enhanced efflux of Ca2+, suggesting that internal rather than bound external Ca2+ was exchanged with Na+. La3+ abolished Na+−Ca2+ exchange and decreased overall membrane permeability. Na+−Ca2+ exchange was not due to sarcoplasmic reticulum or mitochondrial contaminants. This investigation suggests that skeletal muscle, like cardiac muscle and neurons, is capable of a transmembranous Na+−Ca2+ exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, C.M., Bezanilla, F.M., Horowicz, P. 1972. Twitches in the presence of ethylene glycol bis (β-aminoethyl ether)-N,N′-tetracetic acid.Biochim Biophys. Acta 267:605–608

    PubMed  Google Scholar 

  2. Bartschat, D.K., Lindenmayer, G.E. 1980. Calcium movements promoted by vesicles in a highly enriched sarcolemma preparation from canine ventricle.J. Biol. Chem. 255:9626–9634

    PubMed  Google Scholar 

  3. Bianchi, C.P. 1968. Cell Calcium. Buttersworth, London

    Google Scholar 

  4. Bianchi, C.P., Shanes, A.M. 1959. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture.J. Gen. Physiol. 42:805–815

    Google Scholar 

  5. Brandt, N.R., Caswell, A.H., Brunschwig, J.P. 1980. ATP-energized Ca2+ pump in isolated transverse tubules of skeletal muscle.J. Biol. Chem. 255:6290–6298

    PubMed  Google Scholar 

  6. Caputo, C., Bolãnos, P. 1978. Effect of external sodium and calcium on calcium efflux in frog striated muscle.J. Membrane Biol. 41:1–14

    Google Scholar 

  7. Caroni, P., Carafoli, E. 1981. The Ca2+-pumping ATPase of heart sarcolemma.J. Biol. Chem. 256:3263–3270

    PubMed  Google Scholar 

  8. Cosmos, E.E., Harris, E.J. 1961.In vitro studies of the gain and exchange of calcium in frog skeletal muscle.J. Gen. Physiol. 44:1121–1130

    PubMed  Google Scholar 

  9. Curtis, B.A. 1966. Ca2+ fluxes in single twitch muscle fibers.J. Gen. Physiol. 50:255–267

    PubMed  Google Scholar 

  10. Fiske, C.H., Subbarow, Y. 1925. The colorimetric determination of phosphorus.J. Biol. Chem. 66:375–400

    Google Scholar 

  11. Fleischer, S., Fleischer, B. 1967. Removal and binding of polar lipids in mitochondria and other membrane systems.Methods Enzymol. 10:406–433

    Google Scholar 

  12. Gilbert, D.L., Fenn, W.O. 1957. Calcium equilibrium in muscle.J. Gen. Physiol. 40:393–408

    PubMed  Google Scholar 

  13. Gilbert, J.R. 1980. K+, Na+ and Cl permeability of sarcolemmal vesicles from rabbit skeletal muscle.Fed. Proc 39(6):2176

    Google Scholar 

  14. Goldbarg, J.A., Rutenberg, A.M. 1958. The colorimetric determination of leucine aminopeptidase in urine and serum of normal subjects and patients with cancer and other diseases.Cancer 11:283–291

    PubMed  Google Scholar 

  15. Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerve.J. Gen. Physiol. 59:637–658

    Google Scholar 

  16. Horackova, M., Vassort, G. 1979. Sodium-calcium exchange in regulation of cardiac contractility.J. Gen. Physiol. 73:403–424

    PubMed  Google Scholar 

  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  18. Malouf, N.N., Meissner, G. 1979. Localization of a Mg2+-or Ca2+-activated (“Basic”) ATPase in skeletal muscle.Exp. Cell Res. 122:233–250

    PubMed  Google Scholar 

  19. McKinley, D., Meissner, G. 1978. Evidence for a K+, Na+ permeable channel in sarcoplasmic reticulum.J. Membrane Biol. 44:159–186

    Google Scholar 

  20. Moore, B., Lentz, B.R., Meissner, G. 1978. Effects of sarcoplasmic reticulum Ca2+-ATPase on phospholipid bilayer fluidity: Boundary lipid.Biochemistry 17:5248–5254

    PubMed  Google Scholar 

  21. Mullins, L.J. 1979. The generation of electric currents in cardiac fibers by Na/Ca exchange.Am. J. Physiol. 236:C103-C110

    Google Scholar 

  22. Philipson, K.D., Nishimoto, A.Y. 1981. Na+−Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles.J. Biol. Chem. 255:6880–6882

    Google Scholar 

  23. Philipson, K.D., Nishimoto, A.Y. 1981. Efflux of Ca2+ from cardiac sarcolemmal vesicles.J. Biol. Chem. 256:3698–3702

    PubMed  Google Scholar 

  24. Pitts, B.J.R. 1979. Stoichiometry of sodium-calcium exchange in cardiac sarcolemma vesicles.J. Biol. Chem. 254:6232–6235

    PubMed  Google Scholar 

  25. Reeves, J.P., Sutko, J.L. 1979. Sodium-calcium ion exchange in cardiac membrane vesicles.Proc. Natl. Acad. Sci. USA 76:590–594

    PubMed  Google Scholar 

  26. Reeves, J.P., Sutko, J.L. 1980. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles.Science 208:1461–1463

    PubMed  Google Scholar 

  27. Reuter, H., Seitz, N. 1968. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.J. Physiol. (London) 195:451–470

    Google Scholar 

  28. Rosenberger, L., Triggle, D.J. 1977. Calcium, calcium translocation, and specific calcium antagonists.In: Calcium in Drug Action. G.B. Weiss, editor. pp. 3–31. Plenum Press, New York

    Google Scholar 

  29. Schimmel, S.D., Kent, C., Bischoff, R., Vagelos, P.R. 1973. Plasma membranes from cultured muscle cells: Isolation procedure and separation of putative plasma-membrane marker enzymes.Proc. Natl. Acad. Sci. USA 70:3195–3199

    PubMed  Google Scholar 

  30. Tada, M., Yamamoto, T., Tonomura, Y. 1978. Molecular mechanism of active calcium transport by sarcoplasmic reticulum.Physiol. Rev. 58:1–79

    PubMed  Google Scholar 

  31. Yamamoto, S., Greeff, K. 1981. Effect of intracellular sodium on calcium uptake in isolated guinea-pig diaphragm and atria.Biochim. Biophys. Acta 646:348–352

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, J.R., Meissner, G. Sodium-calcium ion exchange in skeletal muscle sarcolemmal vesicles. J. Membrain Biol. 69, 77–84 (1982). https://doi.org/10.1007/BF01871244

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871244

Key words

Navigation