Skip to main content
Log in

Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

PGE2 and LTC4 syntheses in Ehrlich ascites cells were measured by radioimmunoassay. Hypotonic swelling results in stimulation of the leukotriene synthesis and a concomitant reduction in the prostaglandin synthesis. If the cells have access to sufficient arachidonic acid there is a parallel increase in the synthesis of both leukotrienes and prostaglandins following hypotonic exposure. PGE2 significantly inhibits regulatory volume decrease (RVD) following hypotonic swelling in Na-containing medium but not in Na-free media, supporting the hypothesis that the effect of PGE2 is on the Na permeability. PGE2 also had no effect on RVD in Na-free media in the presence of the cation ionophore gramicidin. Since the Cl permeability becomes rate limiting for RVD in the presence of gramicidin, whereas the K permeability is rate limiting in its absence, it is concluded that PGE2 neither affects Cl nor K permeability. Addition of LTD4 accelerates RVD and since the K permeability is rate limiting for RVD this shows that LTD4 stimulates the K permeability. Inhibition of the leukotriene synthesis by nordihydroguaiaretic acid inhibits RVD even when a high K conductance has been ensured by the presence of gramicidin. It is, therefore, proposed that an increase in leukotriene synthesis after hypotonic swelling is involved also in the activation of the Cl transport pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berridge, M.J. 1982. A novel cellular signaling system based on the integration of phospholipids and calcium metabolism.In: Calcium and Cell Function. Vol III, pp. 1–36. W.Y. Cheung, editor. Academic, New York

    Google Scholar 

  • Berridge, M.J. 1984. Inositol trisphosphate and diacylglycerol as second messengers.Biochem. J. 220:345–360

    PubMed  Google Scholar 

  • Blackstock, E.J., Ellory, J.C., Stewart, G.W. 1985. N-methyl-d-glucamine as a cation replacement for human red-cell transport studies.J. Physiol. (London) 358:90P

    Google Scholar 

  • Braquet, M., Chereau, A., Chabrier, E., Braquet, P. 1984. The membrane signal in human leukocyte: Evidence for a calcium-dependent potassium permeability in a A23187-induced-triggering for arachidonate cascade.Biomed. Biochim. Acta 43:366–372

    Google Scholar 

  • Brune, K., Peskar, B.A. 1985. Modulation by drugs of leukotriene and prostaglandin production from mouse peritoneal macrophages.Int. J. Tiss. Reac. VII:97–103

    Google Scholar 

  • Cashman, J.R. 1985. Leukotriene biosynthesis inhibitors.Pharmaceut. Res. 6:253–261

    Article  Google Scholar 

  • Christensen, P., Gréen, K., Leyssac, P.P. 1983. The relationship between urinary prostaglandin excretion rates and flow in conscious rats. Evaluation of the radioimmunoassay by gas chromatography-mass spectrometry.Acta Physiol. Scand. 117:41–47

    PubMed  Google Scholar 

  • Christensen, P., Leyssac, P.P. 1976. A specific radioimmunoassay for PGE2 using an antibody with high specificity and a sephadex LH-20 microculumn for the separation of prostaglandins.Prostaglandins 11:399–420

    Article  PubMed  Google Scholar 

  • Craven, P.A., DeRubertis, F.R. 1983. Ca2+ calmodulin-dependent release of arachidonic acid for renal medullary prostaglandin synthesis.J. Biol. Chem. 258:4814–4823

    PubMed  Google Scholar 

  • Dembinska-Kiec, A., Korbut, R., Zmuda, A., Kostka-Trabka, E., Simmet, T., Peskar, B.A. 1984. Formation of lipoxygenase and cyclooxygenase metabolites of arachidonic acid by brain tissue.Biomed. Biochim. Acta 43:222–226

    Google Scholar 

  • Erlij, D., Gersten, L., Sterba, G. 1981. Calcium prostaglandin and transepithelial sodium transport.J. Physiol. (London) 320:136P

    Google Scholar 

  • Feinstein, M.B., Sha'afi R.I. 1983. Role of calcium in arachidonic acid metabolism and in the actions of arachidonic acidderived metabolites.Calcium Cell Function IV:337–376

    Google Scholar 

  • Grinstein, S., Clarke, C.A., Dupre, A., Rothstein, A. 1982. Volume-induced increase of anion permeability in human lymphocytes.J. Gen. Physiol. 80:801–823

    Google Scholar 

  • Hall, W.J., O'Donogue, J.P., O'Regan, M.G., Penny, W.J. 1976. Endogenous prostaglandins, adenosine 3′∶5′-monophosphate and sodium transport across isolated frog skin.J. Physiol. (London) 258:731–753

    Google Scholar 

  • Hammerström, S., Ørning, L., Bernström, K. 1985. Metabolism of leukotrienes.Mol. Cell. Biochem. 69:7–16

    PubMed  Google Scholar 

  • Hansen, H.S. 1983. Dietary essential fatty acids and in vivo prostaglandin production in mammals.Wld. Rev. Nutr. Diet. 42:102–134

    Google Scholar 

  • Hoffmann, E.K. 1978. Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells:In. Osmotic and Volume Regulation. Alfred Benzon Symposium XI. C.B. Jørgensen and E. Skadhauge, editors. pp. 397–417 Munksgaard, Copenhagen

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H., Simonsen, L.O. 1984a. Separate K and Cl transport pathways activated by Ca in Ehrlich mouse ascites tumor cells.J. Physiol (London) 357:62P

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H., Simonsen, L.O. 1986. Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells.J. Membrane Biol. 91:227–244

    Article  Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1984b. Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+.J. Membrane Biol. 78:211–222

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Sjöholm, C. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.J. Physiol. (London) 296:61–84

    Google Scholar 

  • Irvine, R.F. 1982. How is the level of free arachidonic acid controlled in mammals?Biochem. J. 204:3–16

    PubMed  Google Scholar 

  • Lambert, I.H. 1987. Effect of arachidonic acid, fatty acids, prostaglandins and leukotrienes on volume regulation in Ehrlich ascites tumor cells.J. Membrane Biol. 98:207–221

    Google Scholar 

  • Lambert, I.H., Hoffmann, E.K. 1982. Amino acid metabolism and protein turnover under different osmotic conditions in Ehrlich ascites tumor cells.Mol. Physiol. 2:273–286

    Google Scholar 

  • Lambert, I.H., Hoffmann, E.K., Christensen, P. 1986. Prostaglandin and leukotriene release during volume regulation in Ehrlich ascites cells.Acta Physiol. Scand. 128:P56

    Google Scholar 

  • Leikauf, G.D., Ueki, I.F., Widdicombe, J.H., Nadel, J.A., 1986. Alteration of chloride secretion across canine tracheal epithelium by lipoxygenase products of arachidonic acid.Am. J. Physiol. 250:F47-F53

    PubMed  Google Scholar 

  • Leyssac, P.P., Christensen, P. 1981. A study of the effect of stimulated endogenous prostaglandin synthesis on urine flow, osmolar excretion rate, and renin release in hydropenic and saline loaded, anesthetized rats.Acta Physiol. Scand. 113:23–31

    PubMed  Google Scholar 

  • Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R., Lefkowith, J.B. 1986. Arachidonic acid metabolism.Annu. Rev. Biochem. 55:69–102

    PubMed  Google Scholar 

  • Nielsen, R., Bjerregaard, H.F. 1984. Intracellular Ca and prostaglandin as regulator of active Na-transport in frog skin. First Int. Congr. Comp. Physiol. Biochem. 88, B 88. Liege, Belgium.

  • Rouzer, C.A., Samuelsson, B. 1985. On the nature of the 5-lipoxygenase reaction in human leukocytes: Enzyme purification and requirement for multiple stimulatory factors.Proc. Natl. Acad. Sci USA 82:6040–6044

    PubMed  Google Scholar 

  • Samuelsson, B. 1983. Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation.Science 220:568–575

    PubMed  Google Scholar 

  • Schaeffer, B.E., Zadunaisky, J.A. 1986. Mechanism for leukotriene-C4 stimulation of chloride transport in cornea.J. Membrane Biol. 93:229–236

    Google Scholar 

  • Schulz, R., Seeger, W. 1986. Release of leukotrienes into the perfusate of calcium-ionophore stimulated rabbit lungs.Biochem. Pharmacol. 35:183–193

    PubMed  Google Scholar 

  • Sullivan, M.H.F., Cooke, B.A. 1985. Control and production of leukotriene B4 in rat tumour and testicular Leydig cells.Biochem. J. 230:821–824

    PubMed  Google Scholar 

  • Van den Bosch, H. 1980. Intracellular phospholipase A.Biochim. Biophys. Acta 604:191–246

    PubMed  Google Scholar 

  • Wong, P.Y.K., Cheung, W.Y. 1979. Calmodulin stimulates human platelet phospholipase A2.Biochem. Biophys. Res. Commun. 90:473–480

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, I.H., Hoffmann, E.K. & Christensen, P. Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J. Membrain Biol. 98, 247–256 (1987). https://doi.org/10.1007/BF01871187

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871187

Key Words

Navigation