Skip to main content
Log in

Electrophysiological investigation of the amino acid carrier selectivity in epithelial cells fromXenopus embryo

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The electrical responses induced by external applications of neutral amino acids were used to determine whether different carriers are expressed in the membrane of embryonic epithelial cells ofXenopus laevis. Competition experiments were performed under voltage-clamp conditions at constant membrane potential.

Gly,l-Ala,l-Pro,l-Ser,l-Asn andl-Gln generate electrical responses with similar apparent kinetic constants and compete for the same carrier. They are [Na] o and voltage-dependent, insensitive to variations in [Cl] o and [HCO3] o , inhibited by pH o changes, by amiloride and, for a large fraction of the current, by MeAIB. The increase in [K] o at constant and negative membrane potential reduces the response, whereas lowering [K] o augments it.

l-Leu,l-Phe andl-Pro appear to compete for another carrier. They generate electrogenic responses insensitive to amiloride and MeAIB, as well as to alterations of membrane potential, [Na] o and [K] o . Lowering [Cl] o decreases their size, whereas increasing [HCO3] o at neutral pH o increases it.

It is concluded that at least two and possibly three transport systems (A, ASC and L) are expressed in the membrane of the embryonic cells studied. An unexpected electrogenic character of the L system is revealed by the present study and seems to be indirectly linked to the transport function.

l-Pro seems to be transported by system A or ASC in the presence of Na and by system L in the absence of Na. MeAIB induces an inward current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbour, B., Brew, H., Attwell, D. 1988. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium.Nature (London) 335:433–435

    Google Scholar 

  • Bass, R., Hedegaard, H.B., Dillehay, L., Moffett, J., Englesberg, E. 1981. The A, ASC and L systems for the transport of amino acids in Chinese hamster ovary cells (CHO-K1).J. Biol. Chem. 265:10259–10266

    Google Scholar 

  • Bear, E.C., Petersen, O.H. 1987.l-alanine evokes opening of single Ca2+-activated K+ channels in rat liver cells.Pfluegers Arch. 410:342–344

    Google Scholar 

  • Bergman, C., Bergman, J. 1981. Electrogenic responses induced by neutral amino acids in endoderm cells fromXenopus embryo.J. Physiol. (London) 318:259–278

    Google Scholar 

  • Bergman, C., Bergman, J. 1985. Origin and voltage dependence of asparagine-induced depolarization in intestinal cells ofXenopus embryo.J. Physiol. (London) 366:197–220

    Google Scholar 

  • Bergman, C., Bergman, J., Mouttapa, I., 1986. Specific effect of potassium ions on a sodium-coupled amino acid transport. An electrophysiological study. INSERM Symposium No. 26. F. Alvarado and C.H. Van Os, editors. Elsevier, Amsterdam

    Google Scholar 

  • Boerner, P., Saier, M.H. 1982. Growth regulation and amino acid transport in epithelial cells: Influence of culture conditions and transformation on A, ASC and L transport activities.J. Cell. Physiol. 113:240–246

    PubMed  Google Scholar 

  • Brown, P., Sepúlveda, F. 1985. Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum.J. Physiol. (London) 363:271–286

    Google Scholar 

  • Burckhardt, G., Kinne, R., Stange, G., Murer, H. 1980. The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake.Biochim. Biophys. Acta 599:191–201

    PubMed  Google Scholar 

  • Bussolati, O., Laris, P., Longo, N., Dall'Asta, V., Franchi-Gazzola, R., Guidotti, G., Gazzola, G. 1986. Effect of extracellular potassium on amino acid transport and membrane potential in fetal human fibroblasts.Biochim. Biophys. Acta 854:240–250

    PubMed  Google Scholar 

  • Carter-Su, C., Kimmich, G.A. 1980. Effects of membrane potential on Na-dependent sugar transport by ATP-depleted intestinal cells.Am. J. Physiol. 238:C73-C80

    Google Scholar 

  • Christensen, H.N., Cespedes, C. de, Handlogten, M.E., Ronquist, G. 1973. Energization of amino acids transport, studied for the Ehrlich ascites tumour cell.Biochim. Biophys. Acta. 300:487–522

    PubMed  Google Scholar 

  • Christensen, H.N., Liang, M., Archer, E.G. 1967. A distinct Na+-requiring transport system for alanine, serine, cysteine and similar amino acids.J. Biol. Chem. 242:5237–5246

    Google Scholar 

  • Collarini, E.J., Oxender, D.L. 1987. Mechanisms of transport of amino acids across membranes.Annu. Rev. Nutr. 7:75–117

    PubMed  Google Scholar 

  • Curran, P.F., Schultz, S.G., Chez, R.A., Fuisz, R.E. 1967. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine.J. Gen. Physiol. 50:1261–1286

    PubMed  Google Scholar 

  • Eddy, A.A. 1968. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites tumour cells in the presence and absence of sodium cyanide.Biochem. J. 108:195–206

    PubMed  Google Scholar 

  • Eddy, A.A., Hogg, M.C. 1969. Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells.Biochem. J. 114:807–814

    PubMed  Google Scholar 

  • Englesberg, E., Moffett, J. 1986. A genetic approach to the study of neutral amino acid transport in mammalian cells in culture.J. Membrane Biol. 91:199–212

    Google Scholar 

  • Fehlmann, M., Samson, M., Koch, K., Leffert, H., Freychet, P., 1981. Amiloride inhibits protein synthesis in isolated rat hepatocytes.Life Sci. 28:1295–1302

    PubMed  Google Scholar 

  • Geck, P., Heinz, E. 1976. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked transport.Biochim. Biophys. Acta 443:49–63

    PubMed  Google Scholar 

  • Gibb, L.E., Eddy, A.A. 1972. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradient.Biochem. J. 129:979–981

    PubMed  Google Scholar 

  • Grasset, E., Gunter-Smith, P., Schultz, S.G. 1983. Effects of Na-coupled alanine transport in intracellular K activities and the K conductance of the basolateral membranes ofNecturus small intestine.J. Membrane Biol. 71:89–94

    Google Scholar 

  • Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodiumcoupled amino acid and sugar transport byNecturus small intestine.J. Membrane Biol. 66:25–39

    Google Scholar 

  • Jauch, P., Petersen, O.H., Läuger, P. 1986. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells.J. Membrane. Biol. 94:99–117

    Google Scholar 

  • Jung, D., Schwarz, W., Passow, H. 1984. Sodium-alanine cotransport in oocytes ofXenopus laevis.J. Membrane Biol. 78:29–34

    Google Scholar 

  • Kehoe, J.S. 1976. Electrogenic effects of neutral amino acids on neurons ofAplysia californica.Cold Spring Habor Symp. Quant. Biol. 40:145–155

    Google Scholar 

  • Kilb, H., Stämpfli, R. 1955. Ein Vielweghahn zur raschen Umschaltung auf verschiedene Durchströmmungs flüssigkeiten.Helv. Physiol. Pharmacol. Acta 13:191–194

    PubMed  Google Scholar 

  • Kilberg, M.S., Christensen, H.N. 1980. The relation between membrane potential and the transport activity of systems A and L in plasma membrane vesicles of the Ehrlich cell.Membrane Biochem. 3:155–168

    Google Scholar 

  • Kilberg, M.S., Handlogten, M.E., Christensen, H.N. 1980. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine histidine and closely related analogs.J. Biol. Chem. 255:4011–4019

    Google Scholar 

  • Kristensen, L. 1986. Associations between transports of alanine and cations across cell membranes in rat hepaocytes.Am. J. Physiol. 251:G575-G584

    PubMed  Google Scholar 

  • Makowske, M., Christensen, H.N. 1982. Hepatic transport system interconverted by protonation from service for neutral to service for anionic amino acids.J. Biol. Chem. 257:14635–14638

    PubMed  Google Scholar 

  • Nieuwkopf, P.D., Faber, J. 1975. Normal Table ofXenopus laevis (Daudin). North Holland, Amsterdam

    Google Scholar 

  • Oxender, D., Christensen, H.N. 1963. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell.J. Biol. Chem. 238:3686–3699

    Google Scholar 

  • Renner, E.L., Lake, J.R., Cragoe, E., Jr., Scharschmidt, B.F. 1988. Amiloride and amiloride analogs inhibit Na+/K+-transporting ATPase and Na+-coupled alanine transport in rat hepatocytes.Biochim. Biophys. Acta 938:386–394

    PubMed  Google Scholar 

  • Saier, M.H., Jr. Daniels, G.A., Boerner, P., Lin, J. 1988. Neutral amino acid transport systems in animal cells: Potential targets of oncogene action and regulators of cellular growth.J. Membrane Biol. 104:1–20

    Google Scholar 

  • Samarzija, I., Hinton, B.T., Frömeter, E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport: III. Neutral amino acids.Pfluegers Arch. 393:199–209

    Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solute.Physiol. Rev. 50:637–718

    PubMed  Google Scholar 

  • Schultz, S.G., Hudson, R.L., Lapointe, J.Y. 1985. Electrophysiological studies of sodium cotransport in epithelia: Toward a cellular model.Ann. N.Y. Acad. Sci. 456:127–135

    PubMed  Google Scholar 

  • Sheppard, D.N., Giraldez, F., Sepúlveda, F.V. 1988. K+ channels activated byl-alanine transport in isolatedNecturus euterocytes.FEBS Lett. 234:446–448

    PubMed  Google Scholar 

  • Thomas, E.L., Christensen, H.N. 1971. Nature of the cosubstrate actions of Na and neutral amino acids in a transport system.J. Biol. Chem. 246:1682–1688

    Google Scholar 

  • White, M.F. 1985. The transport of cationic amino acids across the plasma membrane of mammalian cells.Biochim. Biophys. Acta 822:355–374

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergman, J., Zaafrani, M. & Bergman, C. Electrophysiological investigation of the amino acid carrier selectivity in epithelial cells fromXenopus embryo. J. Membrain Biol. 111, 241–251 (1989). https://doi.org/10.1007/BF01871009

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871009

Key Words

Navigation