Skip to main content
Log in

Freeze-fracture and morphometric analysis of occluding junctions in rectal glands of elasmobranch fish

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The structure of occluding junctions in secretory and ductal epithelium of salt-secreting rectal glands from two species of elasmobranch fish, the spiny dogfishSqualus acanthias and the stingrayDasyatis sabina, was examined by thin-section and freeze-fracture electron microscopy. In both species, occluding junctions between secretory cells are shallow in their apical to basal extent and are characterized by closely juxtaposed parallel strands. Average strand number in the dogfish was 3.5±0.2 with a mean depth of 56±5 nm; in the stingray a mean of 2.0±0.2 strands encompassed an average depth of 18±3 nm. In contrast, the linear extent of these junctions was remarkably large due to the intermeshing of the narrow apices of the secretory cells to form the tubular lumen. Morphometric analysis gave values of 66.8±2.5 and 74.9±4.6 m/cm2 for the length of junction per unit of luminal surface area in the dogfish and stingray, respectively. This junctional morphology is similar to that generally described for “leaky” epithelia. In comparison, the stratified ductal epithelium which carries the NaCl-rich secretion to the intestine is characterized by extensive occluding junctions which extend 0.6–0.8 μm in depth and consist of a mean of 12 strands arranged in an anastomosing network, an architectural pattern typical of “tight” epithelia. The length density of these junctions in the dogfish rectal gland was 7.6±0.1 m/cm2.

The junctional architecture of the rectal gland secretory epithelium (few strands, large junctional length densities) is similar to that described for several other hypertonic secretory epithelia [20, 34] and is compatible with the recent model for salt secretion in rectal glands [39] and in other Cl secretory epithelia which posits a conductive paracellular pathway for transepithelial Na+ secretion from intercellular space to the lumen to form the NaCl-rich secretory product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bulger, R.E. 1963. The structure of the rectal (salt-secreting) gland of the spiny dogfish,Squalus acanthias.Anat. Rec. 147:95

    Google Scholar 

  2. Bulger, R.E. 1965. Electron microscopy of the stratified epithelium lining the excretory canal of the dogfish rectal gland.Anat. Rec. 151:589

    Google Scholar 

  3. Burger, J.W. 1962. Further studies on the function of the rectal gland in the spiny dogfish.Physiol. Zool. 35:205

    Google Scholar 

  4. Burger, J.W. 1972. Rectal gland secretion, in the stingray,Dasyatis sabina.Comp. Biochem. Physiol. 42A:31

    Google Scholar 

  5. Burger, J.W., Hess, W.N. 1960. Function of the rectal gland in the spiny dogfish.Science. 131:670

    Google Scholar 

  6. Choi, J.K. 1963. The fine structure of the urinary bladder of the toad,Bufo marinus.J. Cell Biol. 16:53

    Google Scholar 

  7. Claude, P. 1978. Morphological factors influencing transepithelial permeability: A model for the resistance of thezonula occludens.J. Membrane Biol. 39:219

    Google Scholar 

  8. Claude, P., Goodenough, D.A. 1973. Fracture faces ofzonulae occludentes from “tight” and “leaky” epithelia.J. Cell Biol. 58:390

    Google Scholar 

  9. Degnan, K.J., Zadunaisky, J.A. 1977. Open-circuit Na+ and Cl fluxes across isolated opercular epithelia from seawater-adaptedFundulus heteroclitus and the influence of adrenergic stimulators.Bull. Mt. Desert Isl. Biol. Lab. 17:68

    Google Scholar 

  10. Degnan, K.J., Zadunaisky, J.A. 1979 Open-circuit Na+ and Cl fluxes across isolated opercular epithelia from the teleost,Fundulus heteroclitus.J. Physiol. (London) 294:483

    Google Scholar 

  11. Degnan, K.J., Zadunaisky, J.A. 1980. Passive sodium movements across the opercular epithelium: The paracellular shunt pathway and ionic conductance.J. Membrane Biol. 55:175

    Google Scholar 

  12. Diamond, J.M. 1979. Channels in epithelial cell membranes and junctions.Fed. Proc. 37:2639

    Google Scholar 

  13. Diamond, J.M. 1978. Osmotic water flow in leaky epithelia.J. Membrane Biol. 51:195

    Google Scholar 

  14. DiBona, D.R., Mills, J.W. 1979. Distribution of Na+-pump sites in transporting epithelia.Fed. Proc. 38:134

    Google Scholar 

  15. Doyle, W.L. 1962. Tubule cells of the rectal salt-gland ofUrolophus.Am. J. Anat. 111:223

    Google Scholar 

  16. Ellis, R.A., Goertemiller, C.C., Jr., Stetson, D.L. 1977. Significance of extensive “leaky” cell junctions in the avian salt gland.Nature (London) 265:555

    Google Scholar 

  17. Ernst, S.A., Dodson, W.B., Karnaky, K.J., Jr. 1980. Structural diversity of occluding junctions in the low-resistance chloride-secreting opercular epithelium of seawater-adapted killifish (Fundulus heteroclitus).J. Cell Biol. 87:488

    Google Scholar 

  18. Ernst, S.A., Hootman, S.R., Schreiber, J.H., Riddle, C.V. 1979. Structure of occluding junctions in the salt secreting epithelium of elasmobranch rectal gland.J. Cell Biol. 83:83a

    Google Scholar 

  19. Ernst, S.A., Riddle, C.V., Karnaky, K.J. Jr. 1980. Relationship between localization of Na+-K+-ATPase, cellular fine structure and reabsorptive and secretory electrolyte transport.In Current Topics in Membranes and Transport, Vol. 13. Cellular Mechanisms of Renal Tubular Ion-Transport. E.L. Boulpaep, editor. p. 335. Academic Press, New York

    Google Scholar 

  20. Eveloff, J., Karnaky, K.J., Jr., Silva, P., Epstein, F.H., Kinter, W.B. 1979. Elasmobranch rectal gland cells. Autoradiographic localization of [3H]ouabain-sensitive Na, K-ATPase in rectal gland of dogfishsqualus acanthias.J. Cell Biol. 83:16

    Google Scholar 

  21. Eveloff, J., Kinne, R., Kinne-Saffran, E., Murer, H., Silva, P., Epstein, F.H., Stoff, J., Kinter, W.B. 1978. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland.Pfluegers Arch. Eur. J. Physiol. 378:87

    Google Scholar 

  22. Forster, R.P., Goldstein, L. 1976. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs.Am. J. Physiol. 230:925

    Google Scholar 

  23. Frizzell, R.H., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1

    Google Scholar 

  24. Fromter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature New Biol. 235:9

    Google Scholar 

  25. Goertemiller, C.C., Jr., Ellis, R.A. 1976. Localization of ouabain-sensitive, potassium-dependent nitrophenyl phosphatase in the rectal gland of the spiny dogfish,Squalus acanthias.Cell Tissue Res. 175:112

    Google Scholar 

  26. Hayslett, J.P., Schon, D.A., Epstein, M., Hogben, C.A.M. 1974.In vitro perfusion of the dogfish rectal gland.Am. J. Physiol. 226:1188

    Google Scholar 

  27. Karnovsky, M.J. 1971. Use of ferrocyanide-reduced osmium tetroxide in electron microscopy.Proc. 11th Annu. Meet. Am. Soc. Cell Biol. (New Orleans) p. 146

  28. Machen, R.E., Erlij, D., Wooding, F.B.P. 1972. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine.J. Cell Biol. 54:302

    Google Scholar 

  29. Martinez-Palomo, A., Erlij, D. 1975. Structure of tight junctions in epithelia with different permeability.Proc. Nat. Acad. Sci. USA 72:4487

    Google Scholar 

  30. Mayhew, T.M. 1979. Basic stereological relationships for quantitative microscopical anatomy — a simple systematic approach.J. Anat. 129:95

    Google Scholar 

  31. Moreno, J.H. 1975. Blockage of gallbladder tight junction cation-selective channels by 2,4,6-triaminopyrimidinium (TAP).J. Gen. Physiol. 66:97

    Google Scholar 

  32. Pricam, C., Humbert, F., Perrelet, A., Orci, L. 1974. A freeze-etch study of the tight junctions of the rat kidney tubules.Lab. Invest. 30:286

    Google Scholar 

  33. Riddle, C.V., Ernst, S.A. 1979. Structural simplicity of thezonula occludens in the electrolyte secreting epithelium of the avian salt gland.J Membrane Biol. 45:21

    Google Scholar 

  34. Sardet, C., Pisam, M., Maetz, J. 1979. The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation.J. Cell Biol. 80:96

    Google Scholar 

  35. Siegel, N.J., Schon, D.A., Hayslett, J.P. 1976 Evidence for active chloride transport in dogfish rectal gland.Am. J. Physiol. 230:1250

    Google Scholar 

  36. Siegel, N.J., Silva, P., Epstein, F.H., Maren, T.H. Hayslett, J.P. 1975. Functional correlates of the dogfish rectal gland duringin vitro perfusion.Comp. Biochem. Physiol. 51A:593

    Google Scholar 

  37. Silva, P., Solomon, R., Spokes, K., Epstein, F.H. 1977. Ouabain inhibition of gill Na-K-ATPase: Relationship to active chloride transport.J. Exp. Zool. 199:419

    Google Scholar 

  38. Silva, P., Stoff, J., Field, M., Fine, L. 1977. Mechanism of active chloride secretion by shark rectal gland: Role of Na-K-ATPase in chloride transport.Am. J. Physiol. 233:F298

    Google Scholar 

  39. Smith, H.W. 1936. The retention and physiological role of urea in the elasmobranchii.Biol. Rev. 11:49

    Google Scholar 

  40. Stoff, J.S., Rosa, R., Hallac, R., Silva, P., Epstein, F.H. 1979. Hormonal regulation of active chloride transport in the dogfish rectal gland.Am. J. Physiol. 237:F138

    Google Scholar 

  41. Stoff, J.S., Silva, P., Field, M., Forrest, J., Stevens, A., Epstein, F.H. 1977. Cyclic AMP regulation of active chloride transport in the rectal gland of marine elasmobranchsJ. Exp. Zool. 199:443

    Google Scholar 

  42. Tisher, C.C., Yarger, W.E. 1975. Lanthanum permeability of tight junctions along the collecting duct of the rat.Kidney Int. 7:35

    Google Scholar 

  43. Van Lennep, E.W. 1968. Electron microscopic histochemical studies on salt-excreting glands in elasmobranchs and marine catfish.J. Ultrastruct. Res. 25:94

    Google Scholar 

  44. Weibel, E.R., Bolender, R.P. 1973. Stereological techniques for electron microscopic morphometry.In: Principles and Techniques of Electron Microscopy: Biological Applications. M.A. Hayat, editor. Vol. 3, p. 237. Van Nostrand Reinhold Co., New York

    Google Scholar 

  45. Welling, L.W., Welling, D.J. 1976. Shape of epithelial cells and intercellular channels in the rabbit proximal nephron.Kidney Int. 9:385

    Google Scholar 

  46. Whittembury, G., Rawlins, F.A. 1971. Evidence of a paracellular pathway for ion flow in the kidney proximal tubule: Electron microscopic demonstration of lanthanum precipitate in the tight junction.Pfluegers Arch. Eur. J. Physiol. 330:302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, S.A., Hootman, S.R., Schreiber, J.H. et al. Freeze-fracture and morphometric analysis of occluding junctions in rectal glands of elasmobranch fish. J. Membrain Biol. 58, 101–114 (1981). https://doi.org/10.1007/BF01870973

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870973

Keywords

Navigation