Skip to main content
Log in

Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The membrane ofCaldariella acidophila, an extreme thermophilic archaebacterium, is characterized by unusual bipolar complex lipids. They consist of two nonequivalent polar heads, linked by a C40 alkylic component. The molecular organization of these lipids in the plasma membrane is still a matter of study. In this paper, we present current-voltage measurements on artificial bipolar lipid membranes, indicating that molecules are indeed organized as a covalently bound bilayer, in which each molecule is completely stretched and spans its entire thickness. Furthermore, conformational transitions of these artificial membranes (which could be formed only above 70°C from a lipid/squalene dispersion) are analyzed in the 80 to 15°C temperature range. Abrupt variations in capacitance and valinomycin-induced conductance seem to indicate the occurrence of at least two structural changes. Measurements are also extended to different solvent systems. Results are consistent with the picture of a monolayer bipolar lipid membrane in which few solvent molecules align themselves parallel to the lipophilic chains. The amount of solvent as well as the temperature at which conformational transitions occur, depend on the solvent system in which the lipid is dispersed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, O., Latorre, R. 1978. Voltage-dependent capacitance in lipid bilayers made from monolayers.Biophys. J. 21:1–17

    PubMed  Google Scholar 

  2. Antonov, V.F., Petrov, V.V., Molnar, A.A., Prevoditelev, D.A., Ivanov, A.S. 1980. The appearance of single-ionic channels in unmodified lipid bilayer membrane at the phase transition temperature.Nature (London) 283:585–586

    Google Scholar 

  3. Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., Wolfe, R.S. 1979. Methanogens: Reevaluation of a unique biological group.Microbiol. Rev. 43:260–296

    PubMed  Google Scholar 

  4. Bergelson, L.D., Barsukov, L.I. 1977. Topological asymmetry of phospholipids in membranes.Science 197:224–230

    PubMed  Google Scholar 

  5. Boheim, G., Hanke, W., Eibl, H. 1980. Lipid phase transition in planar bilayer membrane and its effect on carrier-and pore-mediated ion transport.Proc. Natl. Acad. Sci. USA 77:3403–3407

    PubMed  Google Scholar 

  6. Ciani, S.M., Eisenman, G., Laprade, R., Szabo, G. 1973. Theoretical analysis of carrier-mediated electrical properties of bilayer membranes.In: Membranes. A Series of Advances. G. Eisenman, editor. Vol. 2, pp. 61–177. Marcel Dekker, New York

    Google Scholar 

  7. De Rosa, M., De Rosa, S., Gambacorta, A., Bu'Lock, J.D. 1980. Structure of calditol, a new branched-chain nonitol, and of the derived tetraether lipids in thermoacidophilic archaebacteria of theCaldariella group.Phytochemistry 19:249–254

    Google Scholar 

  8. De Rosa, M., Gambacorta, A. Bu'Lock, J.D. 1975. Extremely thermophilic acidophilic bacteria convergent withSulfolobus acidocaldarius.J. Gen. Microbiol. 86:156–164

    PubMed  Google Scholar 

  9. De Rosa, M., Gambacorta, A., Millonig, G., Bu'Lock, J.D. 1974. Convergent characters of extremely thermophilic acidophilic bacteria.Experientia 30:866–868

    PubMed  Google Scholar 

  10. De Rosa, M., Gambacorta, A., Nicolaus, B. 1983. A new membrane model, in thermophilic archaebacteria, based on bipolar ether lipids. J. Membr. Sci. (in press)

  11. De Rosa, M., Gambacorta, A., Nicolaus, B., Bu'Lock, J.D. 1980. Complex lipids ofCaldariella acidophila, a thermoacidophile archaebacterium.Phytochemistry 19:821–825

    Google Scholar 

  12. De Rosa, M., Gambacorta, A., Nicolaus, B., Ross, H.H.M., Grant, W.D., Bu'Lock, J.D. 1982. An asymmetric archaebacterial diether lipid from alkaliphilic halophiles.J. Gen. Microbiol. 128:343–348

    Google Scholar 

  13. Gliozzi, A., Paoli, G., Rolandi, R., De Rosa, M., Gambacorta, A. 1982. Structure and transport properties of artificial bipolar lipid membranes.J. Bioelectrochem. Bioenerg. 9:591–601

    Google Scholar 

  14. Gliozzi, A., Rolandi, R., De Rosa, M., Gambacorta, A. 1982. Artificial black membranes from bipolar lipids of thermophilic archaebacteria.Biophys. J. 37:563–566

    Google Scholar 

  15. Gliozzi, A., Rolandi, R., De Rosa, M., Gambacorta, A., Nicolaus, B. 1982. Membrane models of archaebacteria.In: Transport in Biomembranes. R. Antolini, A. Gliozzi and A. Gorio, editors. pp. 39–48. Raven Press, New York

    Google Scholar 

  16. Gupta, R., Woese, C.R. 1980. Unusual modification patterns in the transfer ribonucleic acids of archaebacteria.Curr. Microbiol. 4:245–249

    Google Scholar 

  17. Hall, J.E. 1981. Voltage-dependent lipid flip-flop induced by alamethicin.Biophys. J. 33:373–381

    PubMed  Google Scholar 

  18. Kandler, O., Hippe, H. 1977. Lack of peptidoglycan in the cell walls ofMethanosarcina barkeri.Arch. Microbiol. 113:57–60

    PubMed  Google Scholar 

  19. Kandler, O., König, H. 1978. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria.Arch. Microbiol. 118:141–152

    PubMed  Google Scholar 

  20. Kates, M., Kushwaha, S.C. 1978. Biochemistry of the lipids of extremely halophilic bacteria.In: Energetics and Structure of Halophilic Microroganisms. S.R. Caplan and M. Ginzburg, editors. pp. 461–479. Elsevier, North Holland Biomedical Press, Amsterdam

    Google Scholar 

  21. Kessel, M., Klink, F. 1980. Archaebacterial elongation factor in ADP-ribosylated by diphteria toxin.Nature (London) 287:250–251

    Google Scholar 

  22. Krasne, S., Eisenman, G. 1976. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nonactin-type carriers.J. Membrane Biol. 30:1–44

    Google Scholar 

  23. Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of bilayers and the mode of action of nonactin, valinomycin and gramicidin.Science 174:412–415

    PubMed  Google Scholar 

  24. Kushwaha, S.C., Kates, M., Sprott, G.D., Smith, I.C.P. 1981. Novel complex polar lipids from the methanogenic archaebacteriumMethanospirillum hungatei.Science 211:1163–1164

    PubMed  Google Scholar 

  25. Langworthy, T.A. 1978. Membranes and lipids of extremely thermoacidphilic microorganisms.In: Biochemistry of Thermophily. S.M. Friedman, editor. pp. 11–30. Academic Press, New York

    Google Scholar 

  26. Luehrsen, K.R., Nicholson, D.E., Eubanks, D.C., Fox, G.E. 1981. An (archaebacterial 5SrRNA contains a long insertion sequeLondon)293:755–756

    Google Scholar 

  27. Makula, R.A., Singer, M.E. 1978. Ether-containing lipids of methanogenic bacteria.Biochem. Biophys. Res. Commun. 82:716–722

    PubMed  Google Scholar 

  28. McIntosh, T.J., Simon, S.A., MacDonald, R.C. 1980. The organization ofn-alkanes in lipid bilayers.Biochim. Biophys. Acta 597:445–463

    PubMed  Google Scholar 

  29. Millonig, G., De Rosa, M., Gambacorta, A., Bu'Lock, J.D. 1975. Ultrastructure of an extremely thermophilic acidophilic microorganism.J. Gen. Microbiol. 86:165–173

    PubMed  Google Scholar 

  30. Naal, M.J., editor. 1973. Tribology Handbook, B2. Butterworths, London

    Google Scholar 

  31. Schoch, P., Sargent, D.F., Schwyzer, R. 1979. Capacitance and conductance as tools for the measurement of asymmetric surface potentials and energy barriers of lipid bilayer membranes.J. Membrane Biol. 46:71–89

    Google Scholar 

  32. Sherwood, D., Montal, M. 1975. Transmembrane lipid migration in planar asymmetric bilayer membranes.Biophys. J. 15:417–434

    Google Scholar 

  33. Stark, G., Benz, R., Pohl, G.W., Janko, K. 1972. Valinomycin as a probe for the study of structural changes of black lipid membranes.Biochim. Biophys. Acta 266:603–612

    PubMed  Google Scholar 

  34. Tanford, C. 1973. The Hydrophobic Effect: Formation of Micelles and Biological Membranes. John Wiley & Sons, London

    Google Scholar 

  35. Tornabene, T.G., Langworthy, T.A. 1979. Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria.Science 203:51–53

    PubMed  Google Scholar 

  36. Tu, J., Prangishvilli, D., Huber, H., Wildgruber, G., Zillig, W., Stetter, K.O. 1982. Taxonomic relations between archaebacteria including 6 novel genera examined by cross hybridizations of DNAs and 16S rRNAs.J. Mol. Evol. 18:109–114

    PubMed  Google Scholar 

  37. White, S.H. 1975. Phase transitions in planar bilayer membranes.Biophys. J. 15:95–117

    PubMed  Google Scholar 

  38. White, S.H. 1977. A study of the physical chemistry of planar bilayer membranes using high precision measurements of sepcific capacitance.Ann. N.Y. Acad. Sci. 303:243–252

    PubMed  Google Scholar 

  39. White, S.H. 1978. Formation of “solvent-free” black lipid bilayer membranes from glycerol monooleate dispersed in squalene.Biophys. J. 23:337–347

    PubMed  Google Scholar 

  40. Woese, C.R. 1981. Archaebacteria.Sci. Am. 244:94–107

    Google Scholar 

  41. Woese, C.R., Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms.Proc. Natl. Acad. Sci. USA 74:5088–5090

    PubMed  Google Scholar 

  42. Woese, C.R., Magrum, L.J., Fox, G.E. 1978. Archaebacteria.J. Mol. Evol. 11:245–252

    PubMed  Google Scholar 

  43. Zillig, W., Schnabel, R., Tu, J., Stetter, K.O. 1982. The phylogeny of archaebacteria, including novel anaerobic thermoacidphiles in the light of RNA polymerase structure.Naturwissenschaften 69:197–204

    Google Scholar 

  44. Zillig, W., Stetter, K.O., Schäfer, W., Janekovic, D., Wunderl, S., Holz, I., Palm, P. 1981. Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras.Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1. Orig. C2:205–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gliozzi, A., Rolandi, R., De Rosa, M. et al. Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes. J. Membrain Biol. 75, 45–56 (1983). https://doi.org/10.1007/BF01870798

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870798

Key Words

Navigation