Skip to main content
Log in

Regulation of passive potassium transport of normal and transformed 3T3 mouse cell cultures by external calcium concentration and temperature

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Regulation of passive potassium ion transport by the external calcium concentration and temperature was studied on cell cultures of 3T3 mouse cells and their DNA-virus transformed derivatives. Upon lowering of external calcium concentration, passive potassium efflux generally exhibits a sharp increase at about 0.1mm. The fraction of calcium-regulated potassium efflux is largely independent of temperature in the cases of the transformed cells, but shows a sharp increase for 3T3 cells upon increasing temperature above 32°C. In the same range of temperature, the 3T3 cells exhibit the phenomenon of high-temperature inactivation of the residual potassium efflux at 1mm external calcium. At comparable cellular growth densities, the transformed cell lines do not show high-temperature inactivation of “residual” potassium efflux. These results are consistent with the notion of a decisive role of the internal K+ concentration in the cell-density dependent regulation of cell proliferation. In particular, the growth-inhibiting effect of lowering the external Ca2+ concentrations is considered as largely due to a rise of passive K+ efflux and a subsequent decrease of internal K+ concentration. The experimental data on the Ca2+ dependence of passive K+ flux are quantitatively described by a theoretical model based on the constant field relations including negative surface charges on the external face of the membrane, which cooperatively bind Ca2+ ions and may concomitantly undergo a lateral redistribution. The present evidence is consistent with acidic phospholipids as representing these negative surface charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G. 1967. Nervenerregung als kooperativer Kationenaustausch in einem zweidimensionalen Gitter.Ber. Bunsenges. Phys. Chem. 71:829–831

    Google Scholar 

  • Adam, G. 1968. Ionenstrom nach einem depolarisierenden Sprung im Membranpotential.Z. Naturforsch. 23b:181–197

    Google Scholar 

  • Adam, G. 1970. Theory of nerve excitation as a cooperative cation exchange in a two-dimensional lattice.In: Physical Principles of Biological Membranes. F. Snell, J. Wolken, G. Iversen, and J. Lam, editors. pp. 35–64. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Adam, G. 1973. Cooperative transitions in biological membranes.In: Synergetics. H. Haken, editor. pp. 220–231. B.G. Teubner, Stuttgart

    Google Scholar 

  • Adam, G., Adam, G. 1975. Cell surface charge and regulation of cell division of 3T3 cells and transformed derivatives.Exp. Cell Res. 93:71–78

    PubMed  Google Scholar 

  • Adam, G., Ernst, M., Seher, J.-P. 1979. Regulation of passive membrane permeability for potassium ions by cell density of 3T3 and SV40-3T3 cells.Exp. Cell Res. 120:127–139

    PubMed  Google Scholar 

  • Adam, G., Läuger, P., Stark, G. 1977. Physikalische Chemie und Biophysik. p. 311ff. Springer Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Balk, S.D. 1971. Stimulation of the proliferation of chicken fibroblasts by folic acid or a serum factor in a plasma containing medium.Proc. Natl. Acad. Sci. USA 68:1689–1692

    PubMed  Google Scholar 

  • Balk, S.D., Polimeni, P.I., Hoon, B.S., LeStourgeon, D.N., Mitchell, R.S. 1979. Proliferation of Rous sarcoma virus-infected, but not of normal, chicken fibroblasts in a medium of reduced calcium and magnesium concentration.Proc. Natl. Acad. Sci USA 76:3913–3916

    PubMed  Google Scholar 

  • Balk, S.D., Whitfield, J.F., Youdale, T., Braun, A.C. 1973. Roles of calcium, serum, plasma, and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts.Proc. Natl. Acad. Sci. USA 70:675–679

    PubMed  Google Scholar 

  • Bamberg, E., Janko, K. 1976. Single channel conductance at lipid bilayer membranes in presence of monazomycin.Biochim. Biophys. Acta 426:447–450

    PubMed  Google Scholar 

  • Bamberg, E., Läuger, P. 1974. Temperature-dependent properties of gramicidin A channels.Biochim. Biophys. Acta 367:127

    PubMed  Google Scholar 

  • Banerjee, S.P., Bosmann, H.B. 1976. Rubidium transport and ouabain binding in normal and virally transformed mouse fibroblasts.Exp. Cell Res. 100:153–158

    PubMed  Google Scholar 

  • Boheim, G., Hanke, W., Eibl, H.-J. 1980. Lipid phase transition in planar bilayer membrane and its effect on carrier and pore mediated ion transport.Proc. Natl. Acad. Sci. USA 77:3403–3407

    PubMed  Google Scholar 

  • van der Bosch, J., Sommer, I., Maier, H., Rahmig, W. 1979. Density-dependent growth adaptation kinetics in 3T3 cell populations following suddent [Ca2+] and temperature changes. A comparison with SV40-3T3 cells.Z. Naturforsch. 34c:279–283

    Google Scholar 

  • Bourne, H.R., Rosengurt, E. 1976. An 18,000 molecular weight polypeptide induces early events and stimulates DNA synthesis in cultured cells.Proc. Natl. Acad. Sci. USA 73:4555–4559

    PubMed  Google Scholar 

  • Bowen-Pope, D.F., Vidair, C., Sanui, H., Rubin, A.H. 1979. Separate roles for calcium and magnesium in their synergistic effect on uridine uptake by cultured cells: Significance of growth control.Proc. Natl. Acad. Sci. USA 76:1308–1312

    PubMed  Google Scholar 

  • Boynton, A.L., Whitfield, J.F. 1976a. Different calcium requirements for roliferation of conditionally and unconditionally tumorigenic mouse cells.Proc. Natl. Acad. Sci. USA 73:1651–1654

    PubMed  Google Scholar 

  • Boynton, A.L., Whitfield, J.F. 1976b. The different actions of normal and supranormal calcium concentrations on the proliferation of BALB/c 3T3 mouse cells.In Vitro 12:479–484

    PubMed  Google Scholar 

  • Boynton, A.L., Whitfield, J.F., Isaacs, R.J., Tremblay, R. 1977. The control of human WI-38 cell proliferation by extracellular calcium and its elimination by SV-40 virus-induced proliferative transformation.J. Cell. Physiol. 92:241–248

    PubMed  Google Scholar 

  • Cammann, K. 1973. Das Arbeiten mit ionenselektiven Elektroden. p. 134. Springer-Verlag, Berlin

    Google Scholar 

  • Cone, C.D., Jr., Tongier, M., Jr. 1974. Contact inhibition of division: Involvement of the electrical transmembrane potential.J. Cell. Physiol. 82:373–386

    Google Scholar 

  • Curran, P.F., Herrera, F.C., Flanigan, W.J. 1963. The effect of Ca and antidiuretic hormone on Na transport across frog skin. II. Sites and mechanism of action.J. Gen. Physiol. 46:1011–1027

    Google Scholar 

  • Dijck, P.W.M. van, Kruijff, B. de, Verkleij, A.J., Deenen, L.L.M. van, Gier, J. de 1978. Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidyl-choline.Biochim. Biophys. Acta 512:84–96

    PubMed  Google Scholar 

  • Ducouret-Prigent, B., Lelievre, L., Paraf A., Kepes, A. 1975. Relationship between intracellular K+ concentrations and K+ fluxes in growing and contact-inhibited cells.Biochim. Biophys. Acta 401:119–127

    PubMed  Google Scholar 

  • Dubecco, R., Elkington, J. 1975. Induction of growth in resting fibroblastic cell cultures by Ca++ Proc. Natl. Acad. Sci. USA 72:1584–1588

    PubMed  Google Scholar 

  • Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. The adsorption of monovalent cations to bilayer membranes containing negative phospholipids.Biochemistry 18:5213–5223

    PubMed  Google Scholar 

  • Elligsen, J.D., Thompson, J.E., Frey, H.E., Kruuv, J. 1976. Correlation of (Na+−K+)ATPase activity with growth of normal and transformed cells.Exp. Cell Res. 87:233–240

    Google Scholar 

  • Ernst, M., Adam, G. 1978. High-temperature inactivation of passive potassium transport in electrically non-excitable cells.Z. Naturforsch. 33c:937–940

    Google Scholar 

  • Ernst, M., Adam, G. 1979. Dependence of intracellular alkali-ion concentrations of 3T3 and SV40-3T3 cells on growth density.Cytobiologie 18:450–459

    PubMed  Google Scholar 

  • Esfahani, M., Limbrick, A.R., Knutton, S., Oka, T., Wakil, S.J. 1972. The molecular organization of lipids in the membrane ofE. coli: Phase transitions.Proc. Natl. Acad. Sci. USA 68:3180

    Google Scholar 

  • Frank, W. 1973. Stimulation of embryonic rat cells in culture by calf serum: VI. Calcium and potassium ions as cofactors.Z. Naturforsch. 28c:322–328

    Google Scholar 

  • Garrahan, P.J., Glynn, I.M. 1967. The behaviour of the sodium pump in red cells in the absence of external potassium.J. Physiol. (London) 192:159–174

    Google Scholar 

  • Geyer, R.P., Sholtz, K.J., Bowie, E.J. 1955. Influence of calcium on potassium concentration in rat liverin vitro.Am. J. Physiol. 182:487–492

    PubMed  Google Scholar 

  • Gilbert, I.G.F. 1972. The effect of divalent cations on the ionic permeability of cell membranes in normal and tumour tissues.Eur. J. Cancer 8:99–105

    PubMed  Google Scholar 

  • Grisham, C.M., Barnett, R.E. 1973. The role of lipid-phase transition in the regulation of the (sodium+potassium) adenosine triphosphatase.Biochemistry 12:2635–2637

    PubMed  Google Scholar 

  • Guggenheim, E.A. 1952. Mixtures. p 29ff. Clarendon Press, Oxford

    Google Scholar 

  • Hauser, H., Darke, A., Phillips, M.C. 1976. Ion binding to phospholipids. Interaction of calcium with phosphatidyl serine.Eur. J. Biochem. 62:335–344

    PubMed  Google Scholar 

  • Hazelton, B., Mitchell, B., Tupper, J.T. 1979. Calcium, magnesium, and growth control in the WI-38 human fibroblast cell.J. Cell Biol. 83:487–498

    PubMed  Google Scholar 

  • Hazelton, B.J., Tupper, J.T. 1979. Calcium transport and exchange in mouse 3T3 and SV40-3T3 cells.J. Cell Biol. 81:538–543

    PubMed  Google Scholar 

  • Hendricksen, H.S., Reinertsen, J.L. 1971. Phosphoinositide interconversion: A model for control of Na+ and K+ permeability in the nerve axon membrane.Biochem. Biophys. Res. Commun. 44:1258–1264

    PubMed  Google Scholar 

  • Hodgkin, A.L., Keynes, R.D. 1957. Movements of labelled calcium in squid giant axons.J. Physiol. (London) 138:253–281

    Google Scholar 

  • Hoeven, R.P. van, Emmelot, P., Krol, J.H., Oomen-Meulemans, E.P.M. 1975. Studies on plasma membranes. XXII. Fatty acid profiles of lipid classes in plasma membranes of rat and mouse livers and hepatomas.Biochim. Biophys. Acta 380:1–11

    PubMed  Google Scholar 

  • Ito, T., Ohnishi, S., Ishinaga, M., Kito, M. 1975. Synthesis of a new phosphatidylserine spin-label and calcium-induced lateral phase separation in phosphatidylserine-phosphatidylcholine membranes.Biochemistry 14:3064–3069

    PubMed  Google Scholar 

  • Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations.Biochemistry 14:152–161

    Google Scholar 

  • Kalant, H., Hickie, R.A. 1968. Effects of divalent cations on K+ transport in liver and morris hepatoma 5123 tc.Cancer Res. 28:2086–2091

    PubMed  Google Scholar 

  • Kaplan, J.G. 1977. The role of cation flux in triggering and maintaining the stimulated state in lymphocytes.In: Regulatory Mechanisms of Lymphocyte Activation. D.O. Lucas, editor. p. 51 ff. Academic Press, New York

    Google Scholar 

  • Kasarov, L. B., Friedman, H. 1974. Enhanced Na+-K+-activated adenosine triphosphate activity in transformed fibroblasts.Cancer Res. 34:1862–1865

    PubMed  Google Scholar 

  • Kimelberg, H.K. 1977. The influence of membrane fluidity on the activity of membrane-bound enzymes.In: Dynamic Aspects of Cell Surface Organization. G. Poste and G.L. Nicolson, editors. pp. 205–293. Elsevier, Amsterdam

    Google Scholar 

  • Kimelberg, H.K., Mayhew, E. 1975. Increased ouabain-sensitive86Rb+ uptake and sodium and potassium ion-activated adenosine triphosphatase activity in transformed cell lines.J. Biol. Chem. 250:100–104

    Google Scholar 

  • Kimelberg, H.K., Mayhew, E. 1976. Cell growth and ouabain-sensitive86Rb+ uptake and (Na+−K+)-ATPase activity in 3T3 and SV40 transformed 3T3 fibroblasts.Biochim. Biophys. Acta 455:865–875

    PubMed  Google Scholar 

  • Kimelberg, H.K., Papahadjopoulos, D. 1972. Phospholipid requirements for (Na+−K+)-ATPase activity: head-group specificity and fatty acid fluidity.Biochim. Biophys. Acta 282:277–292

    PubMed  Google Scholar 

  • Kimelberg, H.K., Papahadjopoulos, D. 1974. Effects of phospholipid acyl chain fluidity, phase transition and cholesterol on (Na+−K+)-stimulated adenosine triphosphatase.J. Biol. Chem. 249:1071–1080

    Google Scholar 

  • Kleinzeller, A., Knotková, A., Nedvidkova, J. 1968. The effect of calcium ions on the steady-state ionic distributions in kidney cortex cells.J. Gen. Physiol. 51:326s-334s

    PubMed  Google Scholar 

  • Koch, K.S., Leffert, H.L. 1979. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation.Cell 18:153–163

    PubMed  Google Scholar 

  • Kolb, H.A., Adam, G. 1976. Regulation of ion permeabilities of isolated rat liver cells by external calcium concentration and temperature.J. Membrane Biol. 26:121–151

    Google Scholar 

  • Kruijff, B. de, Gerritsen, W.J., Oerlemans, A., Dijck, P.W.M. van, Demel, R.A., Deenen, L.L.M. van 1974. Polyene antibioticsterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. II. Temperature dependence.Biochim. Biophys. Acta 339:44–56

    PubMed  Google Scholar 

  • Lamb, J.F., McCall, P. 1972. Effect of prolonged ouabain treatment on Na, K, Cl, and Ca concentration and fluxes in cultured human cells.J. Physiol. (London) 225:599–617

    Google Scholar 

  • Ledbetter, M.L.S., Lubin, M. 1977. Control of protein synthesis in human fibroblasts by intracellular potassium.Exp. Cell Res. 105:223–236

    PubMed  Google Scholar 

  • Ledbetter, M.L.S., Lubin, M. 1979. Transfer of potassium. A new measure of cell-cell coupling.J. Cell Biol. 80:150–165

    PubMed  Google Scholar 

  • Lee, A.G. 1977. Lipid phase transitions and phase diagrams. II. Mixtures involving lipids.Biochim. Biophys. Acta 472:285–344

    PubMed  Google Scholar 

  • Linden, C.D., Wright, K.L., McConnell, H.M., Fox, C.F. 1973. Lateral phase separations in membrane lipids and the mechanism of sugar transport inEscherichia coli.Proc. Natl. Acad. Sci. USA 70:2271–2275

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1967. Cell surface membranes in close contact. Role of calcium and magnesium ions.J. Colloid Interface Sci. 25:34–46

    PubMed  Google Scholar 

  • Lubin, M. 1967. Intracellular potassium and macromolecular synthesis in mammalian cells.Nature (London) 213:451–453

    Google Scholar 

  • Marcum, J.M., Dedman, J.R., Brinkley, B.R., Means, A.R. 1978. Control of microtubule assembly-disassembly by calcium-dependent regulator protein.Proc. Natl. Acad. Sci. USA 75:3771–3775

    PubMed  Google Scholar 

  • McDonald, T.F., Sachs, H.G., Orr, C.W., Ebert, J.D. 1972. Multiple effects of ouabain on BHK cells.Exp. Cell Res. 74:201–206

    PubMed  Google Scholar 

  • McKeehan, W.L., Ham, R.G. 1978. Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells.Nature (London) 275:756–758

    Google Scholar 

  • McLaughlin, S., Harary, H. 1974. Phospholipid flip-flop and the distribution of surface charges in excitable membranes.Biophys. J. 14:200–209

    PubMed  Google Scholar 

  • Means, A.R., Dedman, J.R. 1980. Calmodulin—An intracellular calcium receptor.Nature (London) 285:73–77

    Google Scholar 

  • Michell, R.H. 1975. Inositol phospholipids and cell surface receptor function.Biochim. Biophys. Acta 415:81–147

    PubMed  Google Scholar 

  • Micklem, K.J., Abra, R.M., Knutton, S., Graham, J.M., Pasternak, C.A. 1976. The fluidity of normal and virus-transformed cell plasma membrane.Biochem. J. 154:561–566

    PubMed  Google Scholar 

  • Morril, G.A., Kaback, H.R., Robbins, E. 1964. Effect of calcium on intracellular sodium and potassium concentrations in plant and animal cells.Nature (London) 204:641–462

    Google Scholar 

  • Newton, C., Pangborn, W., Nir, S., Papahadjopoulos, D. 1978. Specificity of Ca2+ and Mg2+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure.Biochim. Biophys. Acta 506:281–287

    PubMed  Google Scholar 

  • Ohnishi, S., Ito, T. 1973. Clustering of lecithin molecules in phosphatidylserine membranes induced by Ca++-binding to phosphatidylserine.Biochem. Biophys. Res. Commun. 51:132–138

    PubMed  Google Scholar 

  • Ohnishi, S., Ito, T. 1974. Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes.Biochemistry 13:881–887

    Google Scholar 

  • Overath, P., Schairer, H.U., Stoffel, W. 1970. Correlation ofin vivo andin vitro phase transitions of membrane lipids inEscherichia coli.Proc. Natl. Acad. Sci. USA 67:606–612

    PubMed  Google Scholar 

  • Papahadjopoulos, D. 1968. Surface properties of acidic phospholipids: Interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions.Biochim. Biophys. Acta 163:240–254

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffer, B.E., Vail, W.J. 1974. Membrane fusion and molecular segregation in phospholipid vesicles.Biochim. Biophys. Acta 352:10–28

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Vail, W.J., Newton, C., Nir, S., Jacobson, K., Poste, G., Lazo, R. 1977. Studies on membrane fusion. III. The role of calcium-induced phase changes.Biochim. Biophys. Acta 465:579–598

    PubMed  Google Scholar 

  • Paul, D., Ristow, H.J. 1979. Cell cycle control by Ca++-ions in mouse 3T3 cells and in transformed 3T3 cells.J. Cell. Physiol. 98:31–40

    PubMed  Google Scholar 

  • Perkins, R.G., Scott, R.E. 1978. Differences in the phospholipid, cholesterol, and fatty acyl composition of 3T3 and SV3T3 plasma membranes.Lipids 13:653–657

    PubMed  Google Scholar 

  • Pollack, M., Fisher, H.W. 1976. Dissociation of ribonucleic acid and protein synthesis in mammalian cells deprived of potassium.Arch. Biochem. Biophys. 172:188–190

    Google Scholar 

  • Priestland, R.N., Whittam, R. 1972. The temperature dependence of activation by phosphatidylserine of the sodium pump adenosine triphosphatase.J. Physiol. (London) 220:353–361

    Google Scholar 

  • Quissel, D.O., Suttie, J.W. 1973. Effect of fluoride and other metabolic inhibitors on intracellular sodium and potassium concentrations in L cells.J. Cell. Physiol. 82:59–64

    PubMed  Google Scholar 

  • Rixon, R.H., Whitfield, J.F. 1976. The control of liver regeneration by parathyroid hormone and calcium.J. Cell Physiol. 87:147–156

    Google Scholar 

  • Rosengurt, E., Heppel, L.A. 1975. Serum rapidly stimulates ouabain-sensitive86Rb+ influx in quiescent 3T3 cells.Proc. Natl. Acad. Sci. USA 72:4492–4495

    PubMed  Google Scholar 

  • Rosengurt, E., Legg, A., Pettican, P. 1979. Vasopressin stimulation of mouse 3T3 cell growth.Proc. Natl. Acad. Sci USA 76:1284–1287

    PubMed  Google Scholar 

  • Roufogalis, B.D. 1980. Calmodulin: Its role in synaptic transmission.Trens Neuro-Sci. Oct.:238–241

    Google Scholar 

  • Rubin, A.H., Terasaki, M., Sanui, H. 1978. Magnesium reverses inhibitory effects of calcium deprivation on coordinate response of 3T3 cells to serum.Proc. Natl. Acad. Sci. USA 75:4379–4383

    PubMed  Google Scholar 

  • Rubin, A.H., Terasaki, M., Sanui, H. 1979. Major intracellular cations and growth control Correspondence among magnesium content, protein synthesis, and the onset of DNA synthesis in Balb/c 3T3 cells.Proc. Natl. Acad. Sci. USA 76:3917–3921

    PubMed  Google Scholar 

  • Sanui, H., Rubin, A.H. 1979. Measurement of total, intracellular and surface bound cations in animal cells grown in culture.J. Cell. Physiol. 100:215–226

    PubMed  Google Scholar 

  • Schairer, H.U., Overath, P. 1969. Lipids containing trans-unsuturated fatty acids change the temperature characteristic of thiomethylgalactoside accumulation inEscherichia coli.J. Mol. Biol. 44:209–214

    PubMed  Google Scholar 

  • Schreier, M.H., Stähelin, T. 1973. Initiation of mammalian protein synthesis: The importance of ribosome and initiation factor quality for the efficiency ofin vitro systems.J. Mol. Biol. 73:329–349

    PubMed  Google Scholar 

  • Seher, J.P., Adam, G. 1978. Dependence of cellular surface area on growth density of 3T3 and SV40-3T3 cells.Z. Naturforsch.33c:739–743

    Google Scholar 

  • Shank, B.B., Smith, N.E. 1976. Regulation of cellular growth by sodium pump activity.J. Cell. Physiol. 87:377–388

    PubMed  Google Scholar 

  • Smith, J.B., Rosengurt, E. 1978a. Lithium transport by fibroblastic mouse cells: Characterization and stimulation by serum and growth factors in quiescent culture.J. Cell. Physiol. 97:441–450

    PubMed  Google Scholar 

  • Smith, J.B., Rosengurt, E. 1978b. Serum stimulates the Na+, K+ pump in quiescent fibroblasts by increasing Na+ entry.Proc. Natl. Acad. Sci. USA 75:5560–5564

    PubMed  Google Scholar 

  • Spaggiare, S., Wallach, M.H., Tupper, J.T. 1976. Potassium transport in normal and transformed mouse 3T3 cells.J. Cell. Physiol. 89:403–416

    PubMed  Google Scholar 

  • Sutherland, E.W. 1972. Studies on the mechanism of hormone action.Science 177:401–408

    PubMed  Google Scholar 

  • Swierenga, S.H.H., MacManus, J.P., Whitfield, J.F. 1976. Regulation by calcium of the proliferation of heart cells from young adult rats.In Vitro 12:31–36

    PubMed  Google Scholar 

  • Thilo, L., Träuble, H., Overath, P. 1977. Mechanistic, interpretation of the influence of lipid phase transitions on transport functions.Biochemistry 16:1283–1290

    PubMed  Google Scholar 

  • Träuble, H., Eibl, H. 1974. Electrostatic, effects on lipid phase transitions. Membrane structure and ionic environment.Proc. Natl. Acad. Sci. USA 71:214–219

    PubMed  Google Scholar 

  • Träuble, H., Overath, P. 1973. The structure ofEscherichia coli membranes studied by fluorescence measurement of lipid phase transitions.Biochim. Biophys. Acta 307:491–512

    PubMed  Google Scholar 

  • Tupper, J.T., Del Rosso, M., Hazelton, B., Zorgniotti, F. 1978. Serum-stimulated changes in calcium transport and distribution in mouse 3T3 cells and their modification by dibutyryl cyclic AMP.J. Cell. Physiol. 95:71–84

    PubMed  Google Scholar 

  • Tupper, J.T., Zografos, L. 1978. Effect of imposed serum deprivation on growth of the mouse 3T3 cell.Biochem. J. 174:1063–1065

    PubMed  Google Scholar 

  • Tupper, J.T., Zorgniotti, F. 1977. Calcium content and distribution as a function of growth and transformation in the mouse 3T3 cell.J. Cell Biol. 75:12–22

    PubMed  Google Scholar 

  • Tupper, J.T., Zorgniotti, F., Mills, B. 1977. Potassium transport and content during G1 and S phase following serum stimulation of 3T3 cells.J. Cell. Physiol. 91:429–440

    PubMed  Google Scholar 

  • Vannucci, S., Del Rosso, M., Cella, C., Urbano, P., Chiarugi, V. 1978. Surface glycosaminoglycans and calcium distribution in 3T3 cells.Biochem. J. 170:185–187

    PubMed  Google Scholar 

  • Whitfield, J.F., MacManus, J.P., Rixon, R.H., Boynton, A.L., Youdale, T., Swierenga, S. 1976. The positive control of cell proliferation by the interplay of calcium ions and cyclic nucleotides. A review.In Vitro 12:1–18

    PubMed  Google Scholar 

  • Whitfield, J.F., Rixon, R.H., Perris, A.D., Youdale, T. 1969. Stimulation by calcium of the entry of thymic lymphocytes into the deoxyribonucleic acid-synthetic (S) phase of the cell cycle.Exp. Cell Res. 57:8–12

    PubMed  Google Scholar 

  • Wilson, G., Rose, S.P., Fox, C.F. 1970. The effect of membrane lipid unsaturation on glycoside transport.Biochem. Biophys. Res. Commun. 38:617–623

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is dedicated to the memory of Max Delbrück (deceased March 10, 1981), in whose laboratory in 1966 the earlier version of the present theoretical model was developed by one of the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, M., Adam, G. Regulation of passive potassium transport of normal and transformed 3T3 mouse cell cultures by external calcium concentration and temperature. J. Membrain Biol. 61, 155–172 (1981). https://doi.org/10.1007/BF01870521

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870521

Key words

Navigation