Skip to main content
Log in

Membrane proteins related to anion permeability of human red blood cells

Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The proteolytic enzymes, pronase, chymotrypsin and trypsin, release a small fraction of covalently bonded 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonate or (3H)DIDS, a specific inhibitor of anion permeability, from intact human red cells. The rate of release is parallel to the digestion of the sialoglycoprotein, indicating that the released (3H)DIDS was bound to that component. Most of the label is associated with a protein that behaves on SDS acrylamide gel electrophoresis as though its molecular weight was 95,000 Daltons (95K). Trypsin has no effect on this protein, but after pronase or chymotrypsin treatment of the cells, the label is found in three peaks of 95, 65 and 35K in proportions of 5, 85 and 10%. In parallel, the enzyme treatment results in a shift of most of the 95K protein to 65 and 35K. The digestion of the glycoprotein and splitting of the 95K protein can occur without any appreciable effects of the enzymes on anion permeability or on the inhibitory effects of DIDS treatment either before or after proteolytic attack. It is suggested that the sialoglycoprotein and the 35K segment of the 95K protein are not involved directly in anion permeation. The most likely location of the inhibitory site is in a portion of the 65K segment, exposed to the outside surface. Some additional observations are presented concerning the shielding effects of the negatively charged sialoglycoprotein and the arrangement of the 95K protein in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(3H)DIDS:

4,4′-Diisothiocyano-2,2′-ditritiostilbene disulfonic acid

SITS:

4-Acetamido-4′-isothiocyano-2,2′-stilbene disulfonic acid

TBS:

Tris-buffer-saline

PBS:

Phosphate buffer saline

PAS:

Periodic Acid Schiff staining (for carbohydrates)

CB:

Coomassie Blue staining (for proteins)

TNBS:

2,4,6-Trinitrobenzene sulfonic acid

FDNB:

1-Fluoro-2,4-dinitrobenzene

EDTA:

Ethylene diamine tetra acetic acid

References

  • Arroti, J. J., Garvin, J. E. 1972. Selective labelling of human erythrocyte components with tritiated trinitrobenzenesulfonic acid and picryl chloride.Biochem. Biophys. Res. Commun. 49:205

    PubMed  Google Scholar 

  • Avruch, J., Fairbanks, C. 1972. Demonstration of a phosphopeptide intermediate in the Mg++-dependent Na+-and the K+-stimulated adenosine triphosphatase reaction of the erythrocyte membrane.Proc. Nat. Acad. Sci. 69:1216

    PubMed  Google Scholar 

  • Bender, W. W., Garan, W., Berg, H. C. 1971. Proteins of the human erythrocyte membrane as modified by pronase.J. Mol. Biol. 58:783

    PubMed  Google Scholar 

  • Bretscher, M. S. 1971. Human erythrocyte membranes: Specific labelling of surface proteins.J. Mol. Biol. 58:775

    PubMed  Google Scholar 

  • Bretscher, M. S. 1972. Phosphatidylethanolamine: Differential labelling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent.J. Mol. Biol. 71:523

    PubMed  Google Scholar 

  • Cabantchik, Z. I., Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol. 10:311

    Google Scholar 

  • Cabantchik, Z. I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207

    Google Scholar 

  • Cook, G. M., Eylar, E. H. 1965. Separation of the M and N blood group antigens of the human erythrocyte.Biochim. Biophys. Acta 101:57

    PubMed  Google Scholar 

  • Dacie, J. V., Lewis, S. M. 1968. Practical Hematology. p. 481. Grune and Stratton Inc., New York

    Google Scholar 

  • Dodge, J. T., Mitchell, C., Hanahan, D. 1963. The preparation and chemical characteristics of hemglobin free ghosts of human erythrocytes.Arch. Biochem. Biophys. 110:119

    Google Scholar 

  • Fairbanks, G., Steck, T. L., Wallach, D. F. H. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.Biochemistry 10:2806

    Google Scholar 

  • Gahmberg, C. G., Hakomori, S. J. 1973. External labelling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes.J. Biol. Chem. 248:4311

    PubMed  Google Scholar 

  • Gordesky, S. E., Marinetti, G. V. 1973. The asymmetric arrangement of phospholipids in the human erythrocyte membrane.Fred. Proc. 32:674

    Google Scholar 

  • Hamaguchi, H., Cleve, H. 1972. Solubilization of human erythrocyte membrane glycoproteins and separation of the MN glycoprotein from a glycoprotein with I, S, and A activity.Biochim. Biophys. Acta 278:271

    PubMed  Google Scholar 

  • Juliano, R. L., Rothstein, A. 1971. Properties of an erythrocyte membrane lipoprotein fraction.Biochim. Biophys. Acta 240:227

    Google Scholar 

  • Knauf, P. A., Proverbio, F., Hoffman, J. F. 1974. Chemical characterization and pronase susceptability of the Na:K pump associated phosphoprotein of human red blood cells.J. Gen. Physiol. (In press)

  • Knauf, P. A., Rothstein, A. 1971. Chemical modification of membranes. I. Effect of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190

    PubMed  Google Scholar 

  • Lepke, S., Passow, H. 1973. Asymmetric inhibition by phorizin of sulfate movements across the red blood cell membrane.Biochim. Biophys. Acta 298:529

    PubMed  Google Scholar 

  • Maddy, H 1964. A fluorescent label for the outer components of the erythrocyte membrane.Biochim. Biophys. Acta 88:390

    PubMed  Google Scholar 

  • Passow, H. 1971. Effects of pronase on passive ion permeability of the human red blood cell.J. Membrane Biol. 6:233

    Google Scholar 

  • Phillips, D. R., Morrison, M. 1971. Exposed protein on the intact human erythrocyte.Biochemistry 10:1766

    PubMed  Google Scholar 

  • Phillips, D. R., Morrison, M. 1973. Changes in accessibility of plasma membrane protein as the result of trypsin hydrolysis.Nature, New Biol. 242:213

    Google Scholar 

  • Rosenberg, S. A., Guidotti, G. 1968. The protein of human erythrocyte membranes. I. Preparation, solubilization and partial characterization.J. Biol. Chem. 243:1985

    PubMed  Google Scholar 

  • Rothstein, A., Cabantchik, Z. I. 1973. Protein structures involved in the anion permeability of the red blood cell membrane.In: Comparative Biochemistry and Physiology of Transport. K. Block, L. Bolis and S. E. Luria, editors. North Holland Publishing Co. (In press)

  • Rothstein, A., Knauf, P. A., Cabantchik, Z. I., Balshin, M. 1973. The location and chemical nature of drug “targets” within the human erythrocyte membrane.In: Proceedings of the Biological Council Symposium on Drugs and Transport Processes. B. A. Callingham, editor. The Macmillan Press, London(In press)

    Google Scholar 

  • Segrest, J., Kahane, I., Jackson, R. L., Marchesi, V. T. 1973. Major glycoprotein of the human erythrocyte membrane: Evidence for an amphipathic molecular structure.Arch. Biochem. Biophys. 155:1973

    Google Scholar 

  • Steck, T. L., Fairbanks, G., Wallach, D. F. H. 1971. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection.Biochemistry 10:2617

    PubMed  Google Scholar 

  • Tanner, M. J. A., Boxer, O. J. 1972. Separation and some properties of the major proteins of human erythrocyte membranes.Biochem. J. 129:333

    PubMed  Google Scholar 

  • Triplett, R. B., Carraway, K. L. 1972. Proteolytic digestion of erythrocytes, resealed ghosts and isolated membranes.Biochemistry 11:2897

    PubMed  Google Scholar 

  • Warren, L. 1959. The thiobarbituric acid assay of sialic acids.J. Biol. Chem. 234:1971

    PubMed  Google Scholar 

  • Winzler, R. J. 1969. A glycoprotein in human erythrocyte membranes I.In: Red Cell Membrane: Structure and Function. G. A. Jamieson and T. J. Greenwalt editors. p. 157. J. B. Lippincott. Philadelphia

    Google Scholar 

  • Yu, J., Fishman, D. A., Steck, T. L. 1973. Selective solubilization of proteins and phospholipids from red blood cell membranes by anionic detergents.J. Supramol. Struct. 1:233

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabantchik, Z.I., Rothstein, A. Membrane proteins related to anion permeability of human red blood cells. J. Membrain Biol. 15, 227–248 (1974). https://doi.org/10.1007/BF01870089

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870089

Keywords

Navigation