Skip to main content
Log in

Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: translocation of regions outside the channel-forming domain

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

C-terminal fragments of colicin E1, ranging in mol wt from 14.5 to 20kD, form channels with voltage dependence and ion selectivity qualitatively similar to those of whole E1, placing an upper limit on the channel-forming domain. Under certain conditions, however, the gating kinetics and ion selectivity of channels formed by these different E1 peptides can be distinguished. The differences in channel behavior appear to be correlated with peptide length. Enzymatic digestion with trypsin of membrane-bound E1 peptides converts channel behavior of longer peptides to that characteristic of channels formed by shorter fragments. Apparently trypsin removes segments of protein N-terminal to the channel-forming region, since gating behavior of the shortest fragment is little affected by the enzyme. The success of this conversion depends on the side of the membrane to which trypsin is added and on the state, open or closed, of the channel. Trypsin modifies only closed channels from thecis side (the side to which protein has been added) and only open channels from thetrans side. These results suggest that regions outside the channel-forming domain affect ion selectivity and gating, and they also provide evidence that large protein segments outside the channel-forming domain are translocated across the membrane with channel gating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blobel, G., Dobberstein, B. 1975. Transfer of proteins across membranes: I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma.J. Cell. Biol. 67:835–851

    Article  PubMed  Google Scholar 

  • Blumenthal, R., Klausner, R.D., Weinstein, J.N. 1980. Voltage-dependent translocation of the asialoglycoprotein receptor across lipid membranes.Nature (London) 288:333–338

    Article  Google Scholar 

  • Brunden, K.R., Cramer, W.A., Cohen, F.S. 1984. Purification of a small receptor-binding peptide from the central region of the colicin E1 molecule.J. Biol. Chem. 259:190–196

    PubMed  Google Scholar 

  • Bullock, J.O., Cohen, F.S., Dankert, J.R., Cramer, W.A. 1983. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOOH-terminal tryptic peptide.J. Biol. Chem. 258:9908–9912

    PubMed  Google Scholar 

  • Cleveland, M.vB., Slatin, S., Finkelstein, A., Levinthal, C. 1983. Structure-function relationships for a voltage-dependent ion channel: Properties of COOH-terminal fragments of colicin E1.Proc. Natl. Acad. Sci. USA 80:3706–3710

    PubMed  Google Scholar 

  • Dankert, J.R., Uratani, Y., Grabau, C., Cramer, W.A., Hermodson, M. 1982. On a domain structure of colicin E1.J. Biol. Chem. 257:3857–3863

    PubMed  Google Scholar 

  • Date, T., Goodman, J.M., Wickner, W.T. 1980. Procoat, the precursor of M13 coat protein, requires an electrochemical potential for membrane insertion.Proc. Natl. Acad. Sci. USA 77:4669–4673

    PubMed  Google Scholar 

  • Davidson, V.L., Brunden, K.R., Cramer, W.A., Cohen, F.S. 1984. Studies on the mechanism of action of channel-forming colicins using artificial membranes.J. Membrane Biol. 79:105–118

    Google Scholar 

  • Engelman, D.M., Steitz, T.A. 1981. The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis.Cell 23:411–422

    PubMed  Google Scholar 

  • Goldstein, L. 1976. Kinetic behavior of immobilized enzyme systems.Methods Enzymol. 54:397–443

    Google Scholar 

  • Guy, R.H. 1983. A model of colicin E1 membrane channel protein structure.Biophys. J. 41:363a

    Google Scholar 

  • Hay, R., Bohni, P., Gasser, S. 1984. How mitochondria import proteins.Biochim. Biophys. Acta 779:65–87

    PubMed  Google Scholar 

  • Kagan, B.L. 1981. Voltage-dependent channels formed by colicins. Ph. D. Thesis. Albert Einstein College of Medicine. New York

    Google Scholar 

  • Liu, Q.-R., Fine, R., Crozel, V., Levinthal, F., Levinthal, C. 1985. Molecular models andin vitro mutagenesis of colicin E1.Biophys. J. 47:430a

    Google Scholar 

  • Ohno-Iwashita, Y., Imahori, K., 1982. Assignment of the functional loci in the colicin E1 molecule by characterization of its proteolytic fragments.J. Biol. Chem. 257:6446–6451

    PubMed  Google Scholar 

  • Raymond, L., Slatin, S.L., Finkelstein, A. 1985a. Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity.J. Membrane Biol. 84:173–181

    Google Scholar 

  • Raymond, L., Slatin, S.L., Finkelstein, A. 1985b. Gating of a voltage-dependent channel (colicin E1): The role of membrane translocation of protein.Biophys. J. 47:430a

    Google Scholar 

  • Rosenberg, P.A., Finkelstein, A. 1978. Interaction of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes.J. Gen. Physiol. 72:327–350

    Google Scholar 

  • Slatin, S., Finkelstein, A. 1984. Colicin E1 channels at low pH gate in milliseconds and inactivate.Biophys. J. 45:62a

    Google Scholar 

  • Slatin, S.L., Raymond, L., Finkelstein, A. 1986. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: The role of protein translocation.J. Membrane Biol. 92:247–253

    Google Scholar 

  • Wallace, R.B., Johnson, P.F., Tanaka, S., Schöld, M., Itakura, K., Abelson, J. 1980. Directed deletion of a yeast transfer RNA intervening sequence.Science 209:1396–1400

    PubMed  Google Scholar 

  • Weinstein, J.N., Blumenthal, R., Renswoude, J. van, Kempf, C., Klausner, R.D. 1982. Charge clusters and the orientation of membrane proteins.J. Membrane Biol. 66:203–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, L., Slatin, S.L., Finkelstein, A. et al. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: translocation of regions outside the channel-forming domain. J. Membrain Biol. 92, 255–268 (1986). https://doi.org/10.1007/BF01869394

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869394

Key Words

Navigation