Skip to main content
Log in

Thermodynamics of all-or-none water channel closure in red cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The relation of osmotic to diffusional water permeability of human red blood cells was compared after treating the cells with different concentrations of PCMBS (p-chloromercuribenzene sulfonate). After subtracting the PCMBS-insensitive permeability (presumably the water permeability of the lipid bilayer) from each, the ratio of osmotic to diffusional permeability remains invariant (≈11) as more and more water channels are inhibited by increasing concentrations of PCMBS. This result implies that the channels close in an all-or-none way and suggests a two-state model. Analysis of the dependence of osmotic water permeability on PCMBS concentration in terms of the model reveals a 1∶1 stoichiometry and a dissociation constant for the PCMBS/membrane receptor complex of about 0.019mm at 37°C. Temperature dependence studies show that the reaction is entropically driven (ΔH o≈25 kcal/mol, ΔS o≈100 cal/moldeg) and suggest the involvement of hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee, K., Lauffer, M.A. 1966. Polymerization-depolymerization of tobacco mosaic virus protein. VI. Osmotic pressure studies of early stages of polymerization.Biochemistry 5:1957–1964

    Google Scholar 

  • Benesch, R., Benesch, R.E. 1962. Determination of SH groups in proteins.In: Methods of Biochemical Analysis. D. Glick, editor. Vol. 10, pp. 43–70. Wiley Interscience, New York

    Google Scholar 

  • Brahm, J. 1982. Diffusional water permeability of human erythrocytes and their ghosts.J. Gen. Physiol. 79:791–819

    Google Scholar 

  • Brahm, J., Wieth, J.O. 1977. Separative pathways for urea and water, and for chloride in chicken erythrocytes.J. Physiol. (London) 266:727–749

    Google Scholar 

  • Brown, F. 1983. The effect of compartmental location on the protonT *2 of small molecules in cell suspension: A cellular field gradient model.J. Magn. Reson 54:385–399

    Google Scholar 

  • Cass, A., Finkelstein, A. 1967. Water permeability of thin lipid membranes.J. Gen. Physiol. 50:1765–1784

    Google Scholar 

  • Conlon, T., Outhred, R. 1972. Water diffusion permeability of erythrocytes using an NMR technique.Biochim. Biophys. Acta 288:354–361

    Google Scholar 

  • Conlon, T., Outhred, R. 1978. The temperature dependence of erythrocyte water diffusion permeability.Biochim. Biophys. Acta 511:408–511

    Google Scholar 

  • Dick, D.A.T. 1965. Cell Water. Butterworths, Washington

    Google Scholar 

  • Edelhoch, H., Osborne, J.C., Jr. 1976. The thermodynamic basis of the stability of proteins, nucleic acids, and membranes.In: Advances in Protein Chemistry. C.B. Anfinsen, J.T. Edsall and F.M. Richards, editors. Vol. 30, pp. 183–250. Academic, New York

    Google Scholar 

  • Everitt, C.T., Redwood, W.R., Haydon, D.A. 1969. Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes.J. Theor. Biol. 22:20–32

    Google Scholar 

  • Farmer, R.E.L., Macey, R.I. 1970. Perturbation of red cell volume: Rectification of osmotic flow.Biochim. Biophys. Acta 196:53–65

    Google Scholar 

  • Finkelstein, A., Rosenberg, P.A. 1979. Single-file transport: Implications for ion and water movement through gramicidin A channels.In: Membrane Transport Processes. C.F. Stevens and R.W. Tsien, editors. Vol. 3, pp. 73–88. Raven, New York

    Google Scholar 

  • Hanai, T., Haydon, D.A., Redwood, W.R. 1966. The water permeability of artificial bimolecular leaflets: A comparison of ratio-tracer and osmotic methods.Ann. N.Y. Acad. Sci. 137:731–739

    Google Scholar 

  • Haydon, D.A. 1969. Some recent developments in the study of bimolecular lipid films.In: Molecular Basis of Membrane Transport. D.C. Tosteson, editor. pp. 111–132. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Inoue, S., Sato, H. 1967. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement.J. Gen. Physiol. (Suppl.)5:259–292

    Google Scholar 

  • Kauzmann, W. 1959. Some factors in the interpretation of protein denaturation.Adv. Protein Chem. 14:1–63

    Google Scholar 

  • Lea, E.J.A. 1963. Permeation through long narrow pores.J. Theor. Biol. 5:102–107

    Google Scholar 

  • Levitt, D.G. 1974. A new theory of transport for cell membrane pores. I. General theory and application to red cell.Biochim. Biophys. Acta 373:115–131

    Google Scholar 

  • Macey, R.I. 1979. Permeability of red cells to water and nonelectrolytes.In: Transport Across Biological Membranes. G. Giebisch, D.C. Tosteson and H.H. Ussing, editors. Vol. II, pp. 1–57. Springer-Verlag, Amsterdam

    Google Scholar 

  • Macey, R.I., Chien, D., Moura, T., Karan, D. 1979. Closure of water channels in the red cell.Biophys. J. 25:102 (abstract)

    Google Scholar 

  • Macey, R.I., Farmer, R.E.L. 1970. Inhibition of water and solute permeability in human red blood cell.Biochim. Biophys. Acta 211:104–106

    Google Scholar 

  • Macey, R.I., Karan, D.M., Farmer, R.E.L. 1972. Properties of water channels in human red cells.In: Biomembranes. F. Kreuzer and J.F.G. Slegers, editors. Vol. 3, pp. 331–340. Plenum, New York

    Google Scholar 

  • Mlekoday, H.J., Moore, R., Levitt, D.G. 1983. Osmotic water permeability of the human red cell.J. Gen. Physiol. 81:213–220

    Google Scholar 

  • Naccache, P., Sha'afi, R.I. 1974. Effect of PCMBS on water transfer across biological membranes.J. Cell. Physiol. 83:449–456

    Google Scholar 

  • Paganelli, C.V., Solomon, A.K. 1957. The rate of exchange of tritiated water across the human red blood cell membrane.J. Gen. Physiol. 41:259–277

    Google Scholar 

  • Patai, S. 1974. The chemistry of the thiol group. Parts I and II. John Wiley and Sons, New York

    Google Scholar 

  • Solomon, A.K., Chasan, B., Lukacovic, M.F., Dix, J.A., Verkman, A.S. 1981. Possible relation between anion transport and water flow in red cells.Fed. Proc. 40:484 (abstract)

    Google Scholar 

  • Vieira, F.L., Sha'afi, R.I., Solomon, A.K. 1970. The state of water in human and dog red cell membranes.J. Gen. Physiol. 55:451–466

    Google Scholar 

  • Webb, J.L. 1966. Enzyme and Metabolic Inhibitor II. p. 749. Academic, New York and London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moura, T.F., Macey, R.I., Chien, D.Y. et al. Thermodynamics of all-or-none water channel closure in red cells. J. Membrain Biol. 81, 105–111 (1984). https://doi.org/10.1007/BF01868975

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868975

Key Words

Navigation