Skip to main content
Log in

Ion association reactions with biological membranes, studied with the fluorescent dye 1-anilino-8-naphthalenesulfonate

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

(1) When salts are added to buffered suspensions of membrane fragments containing the fluorochrome 1-anilino-8-naphthalenesulfonate (ANS), there is an increased fluorescence. This is caused by increased binding of the fluorochrome; the intrinsic fluorescence characteristics of the bound dye remain unaltered. These properties make ANS a sensitive and versatile indicator of ion association equilibria with membranes. (2) Alkali metal and alkylammonium cations bind to membranes in a unique manner. Cs+ binds most strongly to rat brain microsomal material, with the other alkali metals in the order Cs+>Rb+>K+>Na+>Li+. The reaction is endothermic and entropy driven. Monovalent cations are displaced by other monovalent cations. Divalent cations and some drugs (e. g., cocaine) displace monovalent cations more strongly. (3) Divalent cations bind to membranes (and to lecithin micelles) at four distinct sites, having apparent association constants between 50 and 0.2mm −1. The characteristics of the titration suggest that only one species of binding site is present at any one time, and open the possibility that structural transitions of the unassociated coordination sites may be induced by divalent cation binding. Divalent cation binding at the weakest site (like monovalent cation binding) is endothermic and entropy driven. At the next stronger site, the reaction is exothermic. Monovalent cations affect divalent cation binding by reducing the activity coefficient: they do not appear to displace divalent cations from their binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubert, X., Chance, B., Keynes, R. D. 1962. Optical studies of biochemical events in the electric organ.Proc. Roy. Soc. (London) B 160:211.

    Google Scholar 

  2. Azzi, A., Chance, B., Radda, G. K., Lee, C.-P. 1969. A fluorescence probe of energy-dependent structure changes in fragmented membranes.Proc. Nat. Acad. Sci. 62:612.

    PubMed  Google Scholar 

  3. Brand, L., Gohlke, J. R., Rao, D. S. 1967. Evidence for binding of rose Bengal and anilinonaphthalene sulphonates at the active site regions of liver alcohol dehydrogenase.Biochemistry 6:3150.

    Google Scholar 

  4. Chance, B., Azzi, A., Mela, L., Radda, G. K., Vainio, H. 1969. Local anaesthetic-induced changes of a membrane-bound fluorochrome. A link between ion uptake and membrane structure.Fed. Europ. Biochem. Socs. Letters 3:10.

    Google Scholar 

  5. —, Cohen, P., Jobsis, F., Schoener, B. 1962. Intracellular oxidation-reduction in vivo.Science 137:499.

    PubMed  Google Scholar 

  6. Davies, C. W. 1962.Ion Association. Chapter 3. Butterworths, London.

    Google Scholar 

  7. Deranleau, D. A. 1969. Theory of the measurement of weak molecular complexes.J. Amer. Chem. Soc. 91:4044.

    Google Scholar 

  8. Dodd, G. H., Radda, G. K. 1969. 1-Anilinonaphthalene-8-sulphonate, a fluorescent conformational probe for glutamate dehydrogenase.Biochem. J.,114:407.

    PubMed  Google Scholar 

  9. Dodge, J. T., Mitchell, C., Hanahan, D. J. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.Arch. Biochem. Biophys. 100:119.

    PubMed  Google Scholar 

  10. Eisenman, G. 1962a. Cation-selective glass electrodes and their mode of operation.Biophys. J. 2:259.

    PubMed  Google Scholar 

  11. — 1962b. On the elementary atomic origin of equilibrium ionic specificity.In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editors. p. 163. Academic Press, New York.

    Google Scholar 

  12. Eylar, E. H., Madoff, M. A., Brody, O. V., Oncley, J. L. 1962. The contribution of sialic acid to the surface charge of the erythrocyte.J. Biol. Chem. 237:1992.

    PubMed  Google Scholar 

  13. Freedman, R. B., Radda, G. K. 1969. The interaction of 1-anilino-8-naphthalene sulphonate with the erythrocyte membrane.Fed. Europ. Biochem. Socs. Letters 3:150.

    Google Scholar 

  14. Gomperts, B. D., Stock, R. 1969. ANS fluorescence as an indicator of ionic interaction with membranes.In: Probes for Membrane Structure and Function (Fourth Johnson Foundation Colloquium). B. Chance, C.-P. Lee, and T. Yonetani, editors. Academic Press, N. Y. (in press).

    Google Scholar 

  15. Gregar, H. P., Hamilton, M. J., Oza, R. J., Bernstein, F. 1956. Studies on ion exchange resins; selectivity coefficients of methacrylic acid resins towards alkali metal cations.J. Phys. Chem. 60:263.

    Google Scholar 

  16. Klotz, I. M., Walker, F. M., Pivan, R. B. 1946. Binding of organic ions by proteins.J. Amer. Chem. Soc. 68:1486.

    Google Scholar 

  17. Ling, G. N. 1962. A Physical Theory of the Living State. Chapter 4. Blaisdell, New York.

    Google Scholar 

  18. Papahadjopoulos, D. 1968. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions.Biochim. Biophys. Acta 163:240.

    PubMed  Google Scholar 

  19. Reichenberg, D. 1966. Ion exchange selectivity.In: Ion Exchange, vol. 1. J. A. Marinsky, editor. Marcel Dekker, New York.

    Google Scholar 

  20. Rubalcava, B., Martinez de Munoz, D., Gitler, C. 1969. Interaction of fluorescent probes with membranes. Effect of ions on erythrocyte membranes.Biochemistry 8:2742.

    PubMed  Google Scholar 

  21. Scatchard, G. 1949. The attraction of proteins for small molecules and ions.Ann. N.Y. Acad. Sci. 51:660.

    Google Scholar 

  22. Stock, R., Gomperts, B. D. 1969. ANS Fluorescence as an indicator of ionic interaction with membranes.In: Abstracts of Third International Biophysics Society Meeting, Cambridge, Mass.

  23. Stryer, L. 1968. Fluorescence spectroscopy of proteins.Science 162:521.

    Google Scholar 

  24. Tasaki, I., Carnay, L., Sandlin, R., Watanabe, A. 1968. Changes in fluorescence, turbidity and birefringence associated with nerve excitation.Proc. Nat. Acad. Sci. 61:883.

    PubMed  Google Scholar 

  25. Truesdell, A. H., Christ, C. L. 1967. Glass electrodes for calcium and other divalent cations.In: Glass Electrodes for Hydrogen and Other Cations. G. Eisenman, editor. Marcell Dekker, New York.

    Google Scholar 

  26. Vanderkooi, J., Martonosi, A. 1969. Use of 8-anilino-1-naphthalenesulphonate as a conformational probe on biological membranes.Arch. Biochem. Biophys. 133:153.

    PubMed  Google Scholar 

  27. Weber, G. 1962. Polarization of the fluorescence of macromolecules.Biochem. J. 51:155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomperts, B., Lantelme, F. & Stock, R. Ion association reactions with biological membranes, studied with the fluorescent dye 1-anilino-8-naphthalenesulfonate. J. Membrain Biol. 3, 241–266 (1970). https://doi.org/10.1007/BF01868018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868018

Keywords

Navigation