Skip to main content
Log in

CuSO4 treatment of nuisance algal blooms in drinking water reservoirs

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Since the turn of the century, copper sulfate has been used extensively as an algicide to control nuisance algal blooms in drinking water reservoirs Recent experimental results have shown that the toxicity of copper to algae is determined by the activity of ionic copper, and not the total copper concentration The sensitivity of algae to ionic copper has been found to vary considerably for different algal species Chemical processes such as precipitation, complexation by dissolved organic substances, and adsorption by suspended material can be important in controlling the chemical speciation of copper added to drinking water reservoirs The copper sulfate dosage required for effective treatment of a reservoir is shown to depend on water chemistry and the copper sensitivity of nuisance algal species By evaluating copper chemistry and copper sensitivity of nuisance algal species it may be possible to obtain effective treatment with lower copper sulfate dosages in some reservoirs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Allen, M. M. 1973. Methods forCyanophyceae. Pages 127–139in J. R. Stein (ed.) Handbook for phycological methods. Cambridge University Press. New York, NY.

    Google Scholar 

  • Anderson, D. M., and F. M. M. Morel. 1978. Copper sensitivity ofGonyaulax tamerensis.Limnol. Oceanogr. 23:283–295.

    Google Scholar 

  • Andrew, R. W., K. E. Biesinger, and G. E. Glass. 1977. Effects of inorganic complexation on the toxicity of copper toDaphnia magna.Water Resour. 11:309–315.

    Google Scholar 

  • Anonymous. 1976. How to identify and control water needs and algae. Applied Biochemists, Inc. Mequon, WI.

  • Brugam, R. B. 1978. Human disturbance and historical development of Linsley Long.Ecology 59:19–36.

    Google Scholar 

  • Button, K. S., H. P. Hostetter, and D. M. Mair. 1977. Copper dispersal in a water-supply reservoir.Water Resour., 11:539–544.

    Google Scholar 

  • Chau, Y. K., R. Gachter, and K. Lum-Shuc-Chan. 1974. Determination of the apparent complexing capacity of lakewaters.J. Fish. Res. Bd. Can. 31:1515–1519.

    Google Scholar 

  • Davey, E. W., M. J. Morgan, and J. J. Erikson. 1973. A biological measurement of copper complexion capacity of seawater.Limnol. Oceanogr. 18:993–1977.

    Google Scholar 

  • Effler, S. W., S. Litten, S. D. Field, T. Tong-Ngork, F. Hale, M. Meyer, and M. Quirk. 1980. Whole lake responses to low level copper sulfate treatment.Water Resour. 14:1489–1499.

    Google Scholar 

  • Elder, J. F., and A. J. Horne. 1978. Copper cycles and CuSO4 algicidal capacity in two California lakes.Environ. Manage. 2:17–30.

    Google Scholar 

  • Erickson, S. J., N. Lackie, and T. E. Maloney. 1970. A screening technique for estimating copper toxicity to estuarine phytoplankton.J.W.P.C.F. 42:R271–278.

    Google Scholar 

  • Fair, M. G., C. J. Geyer, and D. A. Okun. 1971. Elements of water supply and wastewater disposal. John Wiley and Sons, Inc. New York, NY.

    Google Scholar 

  • Faucher, F. 1978. Personal communication.

  • Fitzgerald, G. P., and S. L. Faust. 1963. Factors effecting the algicidal and algistatic properties of copper.Appl. Microbiol. 11:345–351.

    Google Scholar 

  • Fogg, G. E., and D. F. Westlake. 1955. The importance of extracellular products of algae in freshwater.Int. Assoc. Theoret. Appl. Limnol. 12:219–232.

    Google Scholar 

  • Foster, P. L. 1977. Copper exclusion as a mechanism of heavy metal tolerance in a green alga.Nature 269:332–333.

    Google Scholar 

  • Gachter, R., K. Lum-Shuc-Chan, and Y. K. Chau. 1973. Complexing capacity of the nutrient medium and its relation to inhibition of algal photosynthesis by copper.Schweizer. Aeits. fur Hydrol. 35:253–260.

    Google Scholar 

  • Gibson, C. E. 1972. The algicidal effect of copper on a green and blue-green alga and some ecological implications.J. Appl. Ecol. 9:512–518.

    Google Scholar 

  • Gillespie, P. A., and R. F. Vaccaro. 1978. A bacterial bioassay for measuring the copper-chelation capacity of seawater.Limnol. Oceanogr. 23:543–548.

    Google Scholar 

  • Guillard, R. R. L. 1973. Methods for microflagellates and nannoplanktons and, Division rates. Pages 87–104, 289–312in J.R. Stein (ed.) Handbook of phycological methods. Cambridge University Press. New York, NY.

    Google Scholar 

  • Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates, pages 2–60in W.L. Smith and M.H. Chanley (eds) Culture of marine invertebrate animals. Plenum Pub. Co. New York, NY.

    Google Scholar 

  • Hale, F. E. 1954. The use of copper sulfate in control of microscopic organisms. Phelps Dodge Refining Corp. New York, NY.

    Google Scholar 

  • Horne, A. J., and C. R. Goldman. 1974. Suppression of nitrogen fixation by blue-green algae in a eutrophic lake with trace additions of copper.Science 183:409–411.

    Google Scholar 

  • Hoshaw, R. W. and J. R. Rosowski. 1973. Methods for microscopic algae.In J. R. Stein (ed), Handbook of phycological methods. Cambridge University Press. New York, NY.

    Google Scholar 

  • Lund, J. W. G. 1955. The ecology of algae and waterworks practice.Proc. Soc. Wat. Treat Exam. 4:83–109.

    Google Scholar 

  • Manahan, S. E., and M. J. Smith. 1973. Copper micronutrient requirements for algae.Environ. Sci. Technol. 7:829–833.

    Google Scholar 

  • Mandelli, E. F. 1969. The inhibitory effects of copper on marine phytoplankton.Contrib. Mar. Sci. 14:47–57.

    Google Scholar 

  • Martin, D. F., and W. K. Olander. 1971. Effects of copper, titanium and zirconium on the growth rates of the red tide organisms,Gymnodinium breve.Environ. Lett. 2(3):135–142.

    Google Scholar 

  • McKnight, D. M. 1979. Interactions between freshwater plankton and copper speciation. Ph.D. thesis. Mass. Inst. Technol., Cambridge, MA. 284 pp.

    Google Scholar 

  • McKnight, D. M. 1981. Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: A field study of the CuSO4 treatment of Mill Pond Reservoir, Burlington, Massachusetts.Limnol. and Oceanogr. 26(3):518–531.

    Google Scholar 

  • McKnight, D. M., and F. M. M. Morel. 1979. Release of weak and strong copper-complexing agents by algae.Limnol. Oceanogr. 24:823–837.

    Google Scholar 

  • McKnight, D. M., and F. M. M. Morel. 1980. Complexation of copper by siderophores from filamentous blue-green algae.Limnol. Oceanogr. 25:62–71.

    Google Scholar 

  • Moore, G. T., and K. F. Kellerman. 1905. Copper as an algicide and disinfectant in water supplies.Bull. Bureau Plant Indus. U.S.D.A. 76:19–55.

    Google Scholar 

  • Morel, F. M. M., N. M. L. Morel, D. M. Anderson, D. M. McKnight, and J. G. Rueter, Jr. 1979. Trace metal speciation and toxicity in phytoplankton cultures.In F. S. Jacoff (ed), Advances in marine research. US Environmental Protection Agency Environ. Res. Lab., Narraganset, RI.

    Google Scholar 

  • Muchmore, C. B. 1976. Algae control in water supply reservoirs. PB 22–275.

  • Pagenkopf, G. K., R. C. Russo, and R. V. Thurston. 1974. Effect of complexation on toxicity of copper to fishes.J. Fish Res. Bd. Can. 31:462–465.

    Google Scholar 

  • Rueter, J. G., Jr., 1979. The effects of copper and zinc on growth rate and nutrient uptake in the marine diatomThalassiosira pseudonana. Ph.D. thesis. Mass. Inst. Technol., Cambridge, MA 155 pp.

    Google Scholar 

  • Rueter, J. G., Jr., J. J. MaCarthy, and E. J. Carpenter. 1979. The toxic effect of copper onOscillatoria (Trichodesmium)theibautii.Limnol. Oceanogr. 24:558–561.

    Google Scholar 

  • Rueter, J. G., Jr., S. W. Chisholm, and F. M. M. Morel. 1981. The effect of copper toxicity on silicic acid uptake and growth inThalassiosira pseudonana (Bacillariophyceae).J. Phycol. 17:270–278.

    Google Scholar 

  • Sanchez, I., and G. F. Lee. 1978. Environmental chemistry of copper in Lake Monona, Wisconsin.Wat. Res. 12:889–903.

    Google Scholar 

  • Schindler, P. W., B. Furst, R. Dick, and P. U. Wolf. 1979. Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+.J. Colloid. Inter. Sci. 55:469–475.

    Google Scholar 

  • Shapiro, J., V. Lamarra, and M. Lynch. 1975. Biomanipulation: An ecosystem approach to lake restoratioin. Pages 85–96in P. L. Brezonik and J. L. Fox (eds) Proceedings of a symposium on water quality management through biological control. University of Florida and US Environmental Protection Agency.

  • Smith, R. G., Jr. 1976. Evaluation of combined applications of ultrafiltration and complexation capacity techniques to natural waters.Anal. Chem. 48:74–76.

    Google Scholar 

  • Steemann-Nielsen, E. and J. Bruun-Larsen. 1976. Effect of CuSO4 on the photosynthetic rate of phytoplankton in four Danish Lakes.Oikos 27:239–242.

    Google Scholar 

  • Steemann-Nielsen, E., L. Kamp Nielsen, and S. Wium Anderson. 1969. Influence of deleterious concentrations of copper on the photosynthesis ofChlorella pyrenoidosa.Physio. Plant. 22:1121–1133.

    Google Scholar 

  • Steeman Nielsen, E. and S. Wium Anderson. 1970. Copper ions as poison in the sea and freshwater.Mar. Biol. 6:93–97.

    Google Scholar 

  • Stiff, M. J. 1970. Copper/bicarbonate equilibria in solutions of bicarbonate ion at concentrations similar to those found in natural waters.Wat. Res. 5:171–176.

    Google Scholar 

  • Stiff, M. J. 1971. The chemical states of copper in polluted freshwater and a scheme of analysis to differentiate them.Wat. Res. 5:585–599.

    Google Scholar 

  • Stokes, P. M., T. C. Hutchinson, and K. Krauter. 1973. Heavy-metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario.Can. J. Bot. 51:2155–2168.

    Google Scholar 

  • Stumm, W., and P. Baccini. 1978. Man-made chemical perturbation of lakes. Pages 91–123in A. Lerman (ed), Lakes—Chemistry, geology, physics. Springer-Verlag New York, NY.

    Google Scholar 

  • Sunda, W. G., and R. R. L. Guillard. 1976. Relationship between cupric ion activity and the toxicity of copper to phytoplankton.J. Mar. Res. 34:511–529.

    Google Scholar 

  • Sunda, W. G., and P. J. Hanson. 1979. Chemical speciation of copper in river water: effect of total copper, pH, carbonate and dissolved organic matter.In E. A. Jenne ed, Chemical modeling—speciation, sorption, solubility, and kinetics in aqueous systems. Am. Chem. Soc. Envir. Geochem. Health.

  • Sunda, W. G., and J. A. M. Lewis. 1978. Effect of complexation by natural organic ligand on the toxicity of copper to a unicellular alga,Monochrysis lutheri.Limnol. Oceanogr. 23:870–876.

    Google Scholar 

  • Vuceta, J. 1976. Adsorption of Pb(II) and Cu(II) on a-quartz from aqueous solutions: Influence of pH, ionic strength and complexing ligands. Ph.D. thesis. Calif. Inst. Technol., Pasadena, CA.

    Google Scholar 

  • Waiwood, K. G., and F. W. H. Beamish. 1978. Effects of copper, pH and hardness on the critical swimming performance of rainbow trout (Salmo gairdneri Richardson).Wat. Res. 12:611–619.

    Google Scholar 

  • Whitaker, J., J. Barica, H. Kling, and M. Buckley. 1978. Efficiency of copper sulfate in the suppression ofApahizomenon flos-aquae blooms in prairie lakes.Environ. Pollut. 15:185–194.

    Google Scholar 

  • Whitton, B. A. 1973. Freshwater plankton. Pages 353–367in N. G. Carr and B. A. Whitton (eds) The biology of blue-green algae. Univ. Calif. Bot. Monogr. 9.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKnight, D.M., Chisholm, S.W. & Harleman, D.R.F. CuSO4 treatment of nuisance algal blooms in drinking water reservoirs. Environmental Management 7, 311–320 (1983). https://doi.org/10.1007/BF01866913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01866913

Key words

Navigation