Skip to main content
Log in

Geometric applications of a matrix-searching algorithm

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

LetA be a matrix with real entries and letj(i) be the index of the leftmost column containing the maximum value in rowi ofA.A is said to bemonotone ifi 1 >i 2 implies thatj(i 1) ≥J(i 2).A istotally monotone if all of its submatrices are monotone. We show that finding the maximum entry in each row of an arbitraryn xm monotone matrix requires Θ(m logn) time, whereas if the matrix is totally monotone the time is Θ(m) whenmn and is Θ(m(1 + log(n/m))) whenm<n. The problem of finding the maximum value within each row of a totally monotone matrix arises in several geometric algorithms such as the all-farthest-neighbors problem for the vertices of a convex polygon. Previously only the property of monotonicity, not total monotonicity, had been used within these algorithms. We use the Θ(m) bound on finding the maxima of wide totally monotone matrices to speed up these algorithms by a factor of logn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Aggarwal and R. C. Melville, Fast computation of the modality of polygons,Proceedings of the Conference on Information Sciences and Systems, The Johns Hopkins University. Also appears inJ. Algorithms,7 (1986), 369–381.

  2. A. Aggarwal, J. S. Chang, and C. K. Yap, Minimum area circumscribing polygons, Technical Report, Courant Institute of Mathematical Sciences, New York University, 1985. Also to appear inVisual Comput. (1986).

  3. D. Avis, G. T. Toussaint, and B. K. Bhattacharya, On the multimodality of distance in convex polygons,Comput. Math. Appl.,8 (1982), 153–156.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L. J. Guibas, Finding extremal polygons,SIAM J. Comput.,14 (1985), 134–147.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. M. Chazelle, R. L. Drysdale, and D. T. Lee, Computing the largest empty rectangle,SIAM J. Comput.,15 (1986), 300–315.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Dolev, K. Karplus, A. Siegel, A. Strong, and J. D. Ullman, Optimal wiring between rectangles,Proceedings of the 13th Annual ACM Symposium on the Theory of Computing, Milwaukee, WI, 1981, pp. 312–317.

  7. D. T. Lee and F. P. Preparata, The all-nearest-neighbor problem for convex polygons,Inform. Process. Lett.,7 (1978), 189–192.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. McKenna, J. O'Rourke, and S. Suri, Finding the largest rectangle in an orthogonal polygon, Technical Report, The Johns Hopkins University, 1985. Also appears inProceedings of the Allerton Conference on Control, Communications, and Computing, Allerton, IL, 1985.

  9. M. H. Overmars and J. van Leeuwen, Maintenance of configurations in the plane,J. Comput. System Sci.,23 (1981), 166–204.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. P. Preparata, Minimum spanning circle, inSteps in Computational Geometry (F. P. Preparata, ed.), University of Illinois Press, Urbana, 1977, pp. 3–5.

    Google Scholar 

  11. M. I. Shamos, Geometric complexity,Proceedings of the Seventh Annual Symposium on Theory of Computing, Albuquerque, NM, 1975, pp. 224–233.

  12. M. I. Shamos and D. Hoey, Closest-point problems,Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science, Berkeley, CA, 1975, pp. 151–162.

  13. A. Siegel and D. Dolev, The separation for general single-layer wiring barriers,Proceedings of the CMU Conference on VLSI Systems and Computations, Pittsburgh, PA, 1981, pp. 143–152.

  14. M. Tompa, An optimal solution to a wire routing problem,J. Comput. System Sci.,23 (1981), 127–150.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. T. Toussaint, Complexity, convexity and unimodality,Proceedings of the Second World Conference on Mathematics, Las Palmas, Spain, 1982.

  16. G. T. Toussaint, The symmetric all-furtherst-neighbor problem,Comput. Math Appl,9 (1983), 747–754.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. T. Toussaint and B. K. Bhattacharya, On geometric algorithms that use the furthest-neighbor pair of a finite planar set, Technical Report, School of Computer Science, McGill University, 1981.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Bernard Chazelle.

On leave from the Technion, Haifa, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, A., Klawe, M.M., Moran, S. et al. Geometric applications of a matrix-searching algorithm. Algorithmica 2, 195–208 (1987). https://doi.org/10.1007/BF01840359

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01840359

Key words

Navigation