Skip to main content
Log in

Computed tomography, magnetic resonance imaging and positron emission tomography with [18F] fluorodeoxyglucose in multiple system atrophy and pure autonomic failure

  • Research Paper
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

We studied 45 patients who had autonomic failure with computed tomography, magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose to characterize the neuroimaging features of multiple system atrophy and pure autonomic failure and determine the utility of these techniques in distinguishing multiple system atrophy from pure autonomic failure. There were 30 patients with multiple system atrophy and 15 with pure autonomic failure. In the multiple system atrophy group, eight patients had mainly cerebellar signs, seven extrapyramidal and 15 had combinations of cerebellar and extrapyramidal signs. Cerebellar atrophy on computerized tomography and magnetic resonance imaging, signal hypointensity in the posterolateral putamen on magnetic resonance imaging and a generalized reduction in glucose utilization rate with positron emission tomography with [18F]fluorodeoxyglucose, were the main findings and were seen only in the patients with multiple system atrophy. Decreased glucose utilization (hypometabolism) was most prominent in the cerebellum, brainstem, striatum and frontal and motor cortices. These results indicate clear differences, using neuroimaging studies, between multiple system atrophy and pure autonomic failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McLeod JG, Tuck RR. Disorders of the autonomic nervous system: Part 1. Pathophysiology and clinical features.Ann Neurol 1987;21: 419–30.

    PubMed  Google Scholar 

  2. Bannister R. Clinical features of autonomic failure. In: Bannister R. ed.Autonomic Failure: A Textbook of Clinical Disorders of The autonomic Nervous System. New York: Oxford Med Pub, 1988: 1–22.

    Google Scholar 

  3. Polinsky RJ, Nee L. Antonomic failure: Nosology, clinical evaluation and prognosis.Ann Neurol 1989;26: 121.

    Google Scholar 

  4. Johnson RH, Lee GDeJ, Oppenheimer DR,et al. Autonomic failure with hypotension due to intermediolateral column degeneration.Ouart J Med 1966;35: 276–92.

    Google Scholar 

  5. Vanderhaeghen JJ, Perier O, Sternon JE. Pathological findings in idiopathic orthostatic hypotension.Arch Neurol 1970;22: 207–14.

    PubMed  Google Scholar 

  6. Roessman U, van den Noort S, McFarland DE. Idiopathic orthostatic hypotension.Arch Neurol 1971;24: 503–10.

    PubMed  Google Scholar 

  7. Bannister R, Oppenheimer DR. Degenerative diseases of the nervous system associated with autonomic failure.Brain 1972;95: 457–74.

    PubMed  Google Scholar 

  8. Sung JH, Mastri AR, Segal E. Pathology of the Shy-Drager syndrome.J Neuropath Exp Neurol 1979;38: 353–68.

    PubMed  Google Scholar 

  9. Low PA, Thomas JE, Dyck PJ. The splanchnic autonomic outflow in Shy-Drager syndrome and idiopathic orthostatic hypotension.Ann Neurol 1978;4: 511–14.

    PubMed  Google Scholar 

  10. Rajput AH, Rozdilsky B. Dysautonomia in parkinsonism: a clinicopathological study.J Neurol Neurosurg Psych 1976;36: 1092–100.

    Google Scholar 

  11. Oppenheimer DR. Lateral horn cells in progressive autonomic failure.J Neurol Sci 1980;46: 393–404.

    PubMed  Google Scholar 

  12. Cohen J, Low PA, Sheps S,et al. Somatic and autonomic function in progressive autonomic failure and multiple system atrophy.Ann Neurol 1987;22: 692–9.

    PubMed  Google Scholar 

  13. Kontos HA, Richardson DW, Norvell JE. Norepinephrine depletion in idiopathic orthostatic hypotension.Ann Intern Med 1975;82: 336–41.

    PubMed  Google Scholar 

  14. Petito CK, Black IB. Uitrastructure and biochemistry of sympathetic ganglia in idiopathic orthostatic hypotension.Ann Neurol 1978;4: 6–17.

    PubMed  Google Scholar 

  15. Polinsky RJ, Kopin IJ, Ebert MH,et al. Pharmacologic distinction of different orthostatic hypotension syndromes.Neurol 1981;31: 1–7.

    Google Scholar 

  16. Quinn N. Multiple system atrophy—the nature of the beast.J Neurol Neurosurg Psych 1989: S78–89.

  17. Oppenheimer DR. Neuropathology of autonomic failure. In: Bannister R, ed.Autonomic Failure: A Textbook of Clinical Disorders of The Autonomic Nervous System. New York: Oxford Med Pub, 1988: 451–63.

    Google Scholar 

  18. Mathews MR. Assessing the peripheral ganglia in autonomic failure. In: Bannister R, ed.Autonomic Failure: A Textbook of Clinical Disorders of The Autonomic Nervous System. New York: Oxford Med Pub, 1988: 521–43.

    Google Scholar 

  19. Polinsky RJ, Goldstein DS, Brown RT,et al. Decreased sympathetic neuronal uptake in idiopathic orthostatic hypotension.Ann Neurol 1985;18: 48–53.

    PubMed  Google Scholar 

  20. Ziegler MG, Lake CR, Kopin IJ. The sympathetic nervous system defect in primary orthostatic hypotension.NEJM 1977;296: 293–7.

    PubMed  Google Scholar 

  21. Polinsky RJ. Multiple system atrophy: clinical aspects, pathophysiology and treatment.Neurol Clin 1984;2: 487–98.

    PubMed  Google Scholar 

  22. Brooks RA, Friauf WS, Sank VJ, Cascio HE, Leighton SB, Di Chiro G. Initial evaluation of a high resolution positron emission tomography. In: Greitz T, Ingvar DH, Widen L, eds.The Metabolism of the Human Brain Studied with Positron Emission Tomography. New York: Raven Press, 1985: 57–68.

    Google Scholar 

  23. Di Chiro G, Brooks RA, Patronas NJ,et al. Issues in the in-vivo measurement of glucose metabolism of human central nervous system tumors.Ann Neurol 1984;15 (suppl): S138–46.

    Google Scholar 

  24. Phelps ME, Huang SC, Hoffman EJ,et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-Fluoro-2-Deoxy-D-glucose: validation of method.Ann Neurol 1979;6: 371–88.

    PubMed  Google Scholar 

  25. Sokoloff L, Reivich M, Kennedy C,et al. The 14C-Deoxyglucose method for the measurement of local cerebral glucose utilisation: theory, procedure and normal values in the conscious and anesthetized albino rat.J Neurochem 1977;28: 897–916.

    PubMed  Google Scholar 

  26. Aquilonius SM, Ekernas SA. A colour atlas of the human brain. New York: Raven Press, 1980.

    Google Scholar 

  27. Adams RD, van Bogaert L, van der Eecken H. Stirato-nigral degeneration.J Neuropath Exp Neurol 1964;23: 584–608.

    PubMed  Google Scholar 

  28. Hornykiewicz O. Imbalance of brain monoamines and clinical disorders.Prog Brain Res 1982;55: 419–29.

    PubMed  Google Scholar 

  29. Pastakia B, Polinsky RJ, Di Chiro G,et al. Multiple system atrophy (Shy-Drager Syndrome): MR Imaging.Rad 1986;159: 499–502.

    Google Scholar 

  30. Drayer BP, Olanow W, Burger P,et al. Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron.Rad 1986;159: 493–8.

    Google Scholar 

  31. Savioardo M, Strada L, Girotti F,et al. MR imaging in progressive supranuclear palsy and Shy–Drager Syndrome.J Comp Assist Tomog 1989;13: 555–61.

    Google Scholar 

  32. Olanow CW, Albert M, Djang W,et al. MR imaging of putaminal iron predicts response to dopaminergic therapy in Parkinson patients.Neurol 1989;39 (suppl): 275.

    Google Scholar 

  33. De La Paz R, Tetrud J, Langston W. Comparison of MRI in patients with L-dopa-responsive and non-responsive Parkinson's disease.Neurol 1989;39: S275.

    Google Scholar 

  34. Brooks DJ, Salmon EP, Mathias CJ,et al. The relationship between locomotor disability, autonomic dysfunction, and integrity of the striatal dopaminergic system in patients with multiple system atrophyy, pure autonomic failure, and Parkinson's disease, studied with PET.Brain 1990;113: 1539–52.

    PubMed  Google Scholar 

  35. Gilman S, Markel DS, Koeppe RA,et al. Cerebellar and brainstem hypometabolism in olivopontocerebellar atrophy detected with positron emission tomography.Ann Neurol 1988;23: 223–30.

    PubMed  Google Scholar 

  36. De Volder AG, Francart J, Laterre C,et al. Decreased glucose utilization in the striatum and frontal lobe in probable striatonigral degeneration.Ann Neurol 1989;26: 239–47.

    PubMed  Google Scholar 

  37. Duguid JR, De La Paz R, De Groot J. Magnetic resonance imaging of the midbrain in Parkinson's disease.Ann Neurol 1986;20: 744–7.

    PubMed  Google Scholar 

  38. Braffman BH, Grossman RI, Goldberg HI,et al. MR imaging of Parkinson disease with spin-echo and gradient-echo sequences.AJNR 1988;9: 1093–9.

    Google Scholar 

  39. Huber SJ, Chakeras DW, Paulson GW, Khanna R. Magnetic resonance imaging in Parkinson's disease.Arch Neurol 1990;47: 735–7.

    PubMed  Google Scholar 

  40. Kuhl DE, Metter EJ, Riege WH. Patterns of glucose utilization determined in Parkinson's disease by the [18F]fluorodeoxyglucose method.Ann Neurol 1984;15: 419–24.

    PubMed  Google Scholar 

  41. Martin WRW, Beckman JH, Calne DB,et al. Cerebral glucose metabolism in Parkinson's disease.Can J Neurol Sci 1984;11: 169–73.

    PubMed  Google Scholar 

  42. Miletich RS, Chan T, Gillespie M,et al. Contralateral basal ganglia is abnormal in hemiparkinsonian patients: an FDG-PET study.Neurol 1988;38: S260.

    Google Scholar 

  43. Brooks DJ, Salmon EP, Mathias CJ,et al. Correlations between clinical disability and the integrity of the dopaminergic system in patients with multiple system atrophy and pure autonomic failure.Neurol 1989;31(suppl 1): 274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulham, M.J., Dubinsky, R.M., Polinsky, R.J. et al. Computed tomography, magnetic resonance imaging and positron emission tomography with [18F] fluorodeoxyglucose in multiple system atrophy and pure autonomic failure. Clinical Autonomic Research 1, 27–36 (1991). https://doi.org/10.1007/BF01826055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01826055

Key words

Navigation