Skip to main content
Log in

Bubble method for topology and shape optimization of structures

  • Technical Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

This paper addresses a novel method of topology and shape optimization. The basic idea is the iterative positioning of new holes (so-called “bubbles”) into the present structure of the component. This concept is therefore called the “bubble method”. The iterative positioning of new bubbles is carried out by means of different methods, among others by solving a variational problem. The insertion of a new bubble leads to a change of the class of topology. For these different classes of topology, hierarchically structured shape optimizations that determine the optimal shape of the current bubble, as well as the other variable boundaries, are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire, G.; Kohn, R.V. 1993: Optimal design for minimum weight and compliance in plane stress using extremal microstructures.Eur. J. Mech. A/Solids 12, 839–878

    Google Scholar 

  • Atrek, E. 1989: SHAPE: a program for shape optimization of continuum structures.Proc. 1st Int. Conf. Opti'89, pp. 135–144. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Banichuk, N.V. 1990:Introduction to optimization of structures. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Bendsøe, M.P.; Diaz, A.; Kikuchi, N. 1993: Topology and generalized layout optimization of elastic structures. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.):Topology design of structures, pp. 159–205. Dordrecht: Kluwer

    Google Scholar 

  • Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Eng. 71, 197–224

    Google Scholar 

  • Bourgat, J.F. 1973: Numerical experiments of the homogenisation method for operators with periodic coefficients.Lecture Notes in Mathematics 704, pp. 330–356. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Courant, R.; Hilbert, D. 1968:Methods of mathematical physics I. New York: Interscience Publishers

    Google Scholar 

  • Dems, K. 1991: Fist and second-order shape sensitivity analysis of structures.Struct. Optim. 3, 79–88

    Google Scholar 

  • Eschenauer, H.A.; Geilen, J.; Wahl, H.J. 1993: SAPOP- an optimization procedure for multicriteria structural design. In: Schittkowski, K.; Hörnlein, H. (eds.)Numerical methods in FE—based structural optimization systems. Int. Series of Num. Math. Basel: Birkhäuser-Verlag

    Google Scholar 

  • Eschenauer, H.A.; Schnell, W. 1993:Elastizitätstheorie (3rd edition). Mannheim: Bibl. Inst.- Wissenschaftsverlag

    Google Scholar 

  • Eschenauer, H.A.; Schumacher, A. 1993a: Possibilities of applying various procedures of topology optimization to components subject to mechanical loads.ZAMM 73, T392-T394

    Google Scholar 

  • Eschenauer, H.A.; Schumacher, A. 1993b: Bubble method: a special strategy for finding best possible initial designs.Proc. ASME Design Technical Conf. -19th Design Automation Conf. (held in Albuquerque, New Mexico), Vol. 65-2, pp. 437–443

    Google Scholar 

  • Eschenauer, H.A.; Schumacher, A.; Vietor, T. 1993: Decision makings for initial designs made of advanced materials. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 469–480. Dordrecht: Kluwer

    Google Scholar 

  • Eschenauer, H.A.; Weinert, M. 1992: Optimal layouts of complex shell structures by means of decomposition techniques.Proc. 4th AIAA/USAF/NASA/OAI Symp. on Multidisciplinary Analysis and Optimization (held in Cleveland, OH), pp. 999–1007

  • Farin, G. 1991:Splines in CAD/CAM. Surveys on mathematics for industry, pp. 39–73. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Fleury, C.; Braibant, V. 1986: Structural optimization: a new dual method using mixed variables.Int. J. Num. Meth. Eng. 23, 405–428

    Google Scholar 

  • Haug, E.J.; Choi, K.K.; Komkov, V. 1985:Design sensitivity analysis of structural systems. Orlando, Florida: Academic Press

    Google Scholar 

  • Hashin, Z. 1962: The elastic moduli of heterogeneous materials.ASME J. Appl. Mech. 29, 143–150

    Google Scholar 

  • Kirsch, U. 1990: On the relationship between optimum structural topologies and geometries.Struct. Optim. 2, 39–45

    Google Scholar 

  • Kohn, R.; Strang, G. 1986: Optimal design and relaxation of variational problems I–III.Comm. Pure Appl. Math. 39, 113–137, 139–182, 353–377

    Google Scholar 

  • Korycki, R.; Eschenauer, H.A.; Schumacher, A. 1993: Incorporation of adjoint-method sensitivity analysis with the optimization procedure SAPOP.Proc. 11th Polish Conf. Comp. Meth. Mech. (held in Kielce, Poland)

  • Lasdon, L.S. 1982: Reduced gradient methods. In: Powell, M.J.D. (ed.)Nonlinear optimization (8th ed.), pp. 243–250. London: Academic Press

    Google Scholar 

  • Michell, A.G.M. 1904: The limits of economy of materials in frame structures.Phil. Mag. 8, 589–597

    Google Scholar 

  • Parkinson, A.; Wilson, M. 1986: Development of a hybrid SQP—GRG—algorithm for constrained nonlinear programming.Proc. Design Eng. Tech. Conf. (held in Ohio)

  • Prager, W. 1974: A note on discretized Michell structures.Comp. Meth. Appl. Mech. Engng. 3, 349–355

    Google Scholar 

  • Prager, W.; Rozvany, G.I.N. 1977: Optimization of structural geometry. In: Beduarek, A.R.; Cesari, L. (eds.)Dynamical systems, pp. 265–293. New York: Academic Press.

    Google Scholar 

  • Rozvany, G.I.N.; Zhou, M.; Birker, T; Sigmund, O. 1993: Topolagy optimization using iterative continuum-type optimality criteria (COC) methods for discritized systems. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design structures, pp. 273–283. Dordrecht: Kluwer

    Google Scholar 

  • Rozvany, G.I.N.; Zhou, M.; Gollub, W. 1990: Continuum-type optimality criteria methods with a displacement constraint. Part II.Struct. Optim. 2, 77–104

    Google Scholar 

  • Rozvany, G.I.N.; Zhou, M.; Rotthaus, M.; Gollub, W.; Spengemann, F. 1989: Continuum-type optimality criteria methods for large finite element systems with a displacement constraint. Part I.Struct. Optim. 1, 47–72

    Google Scholar 

  • Schmit, L.A.; Mallet, R.H. 1963: Structural synthesis and design parameters.Hierarchy J. Struct. Divi. Proc. ASCE 89, 269–299

    Google Scholar 

  • Svanberg, K. 1987: The method of moving asymptotes — a new method for structural optimization.Int. J. Num. Meth. Eng. 24, 359–373

    Google Scholar 

  • Swanson, J.A. 1988:ANSYS user's manual, Vols. I+II. Houston: Swanson Analysis System Inc.

    Google Scholar 

  • Tartar, L. 1973: Estimation de coefficients homogeneises.Lecture Notes in Mathematics 704, pp. 364–373. Berlin, Heidelberg, New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschenauer, H.A., Kobelev, V.V. & Schumacher, A. Bubble method for topology and shape optimization of structures. Structural Optimization 8, 42–51 (1994). https://doi.org/10.1007/BF01742933

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01742933

Keywords

Navigation